
Formale Systeme II: Theorie

Dynamic Logic:
Propositional Dynamic Logic

SS 2022

Prof. Dr. Bernhard Beckert · Dr. Mattias Ulbrich
Slides partially by Prof. Dr. Peter H. Schmitt

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

http://www.kit.edu

Requirements for this topic

Fundamental knowledge of discreet structures
(graphs, (equivalence) relations)

General understanding of syntax and semantics of
propositional and first order Logic

General understanding of semantical concepts like
satisfiability, decidability of logics

for instance from lecture “Formale Systeme I”

Beckert, Ulbrich – Formale Systeme II: Theorie 2/61

Dynamic Logic(s)

Overview – a family of logics

Modal Logics

Propositional Dynamic Logic

Dynamic Logic

Hybrid DL Java DL

Modal Logics: → Formal Systems I (recap here)
Java DL: Logic used in KeY

→ lecture “Formal Systems II – Applications”

Beckert, Ulbrich – Formale Systeme II: Theorie 3/61

Goals

We get to know Dynamic Logic as . . .

abstract reasoning framework for descriptions of actions

means to formalise and reason about semantics of programs

vehicle for examining/proving theoretical results on program
reasoning

what is decidable, what is not?
relative completeness

concept of program verification on a while language

logic for verification engines for realworld programming
languages

Beckert, Ulbrich – Formale Systeme II: Theorie 4/61

Goals

We get to know Dynamic Logic as . . .

abstract reasoning framework for descriptions of actions

means to formalise and reason about semantics of programs

vehicle for examining/proving theoretical results on program
reasoning

what is decidable, what is not?
relative completeness

concept of program verification on a while language

logic for verification engines for realworld programming
languages

Beckert, Ulbrich – Formale Systeme II: Theorie 4/61

Goals

We get to know Dynamic Logic as . . .

abstract reasoning framework for descriptions of actions

means to formalise and reason about semantics of programs

vehicle for examining/proving theoretical results on program
reasoning

what is decidable, what is not?
relative completeness

concept of program verification on a while language

logic for verification engines for realworld programming
languages

Beckert, Ulbrich – Formale Systeme II: Theorie 4/61

Goals

We get to know Dynamic Logic as . . .

abstract reasoning framework for descriptions of actions

means to formalise and reason about semantics of programs

vehicle for examining/proving theoretical results on program
reasoning

what is decidable, what is not?

relative completeness

concept of program verification on a while language

logic for verification engines for realworld programming
languages

Beckert, Ulbrich – Formale Systeme II: Theorie 4/61

Goals

We get to know Dynamic Logic as . . .

abstract reasoning framework for descriptions of actions

means to formalise and reason about semantics of programs

vehicle for examining/proving theoretical results on program
reasoning

what is decidable, what is not?
relative completeness

concept of program verification on a while language

logic for verification engines for realworld programming
languages

Beckert, Ulbrich – Formale Systeme II: Theorie 4/61

Goals

We get to know Dynamic Logic as . . .

abstract reasoning framework for descriptions of actions

means to formalise and reason about semantics of programs

vehicle for examining/proving theoretical results on program
reasoning

what is decidable, what is not?
relative completeness

concept of program verification on a while language

logic for verification engines for realworld programming
languages

Beckert, Ulbrich – Formale Systeme II: Theorie 4/61

Goals

We get to know Dynamic Logic as . . .

abstract reasoning framework for descriptions of actions

means to formalise and reason about semantics of programs

vehicle for examining/proving theoretical results on program
reasoning

what is decidable, what is not?
relative completeness

concept of program verification on a while language

logic for verification engines for realworld programming
languages

Beckert, Ulbrich – Formale Systeme II: Theorie 4/61

Literature

Formale Systeme II
Vorlesungsskript
Peter H. Schmitt
→ Website

Dynamic Logic
Series: Foundations of Computing
David Harel, Dexter Kozen and Jerzy Tiuryn
MIT Press
→ Department Library

Beckert, Ulbrich – Formale Systeme II: Theorie 5/61

Still an Active Field . . .

From the table of contents

A Dynamic Logic for Learning
Theory (Baltag et al.)

Axiomatization and Computability
of a Variant of Iteration-Free PDL
with Fork (Balbiani et al.)

Dynamic Preference Logic as a
Logic of Belief Change (Souza et
al.)

Dynamic Logic: A Personal
Perspective (Vaughan Pratt)

. . .

Beckert, Ulbrich – Formale Systeme II: Theorie 6/61

Motivating Example

Beckert, Ulbrich – Formale Systeme II: Theorie 7/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

Introductory Example

The Towers of Hanoi

Beckert, Ulbrich – Formale Systeme II: Theorie 8/61

The Instructions

1 Move alternatingly the smallest disk and another one.

2 If moving the smallest disk put it on the stack it did not come
from in its previous move.

3 If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

moveS ; moveO ; moveS ; moveO ; . . .

more concisely:
(moveS ; moveO)∗

improved:

moveS ; testForStop ; (moveO ; moveS ; testForStop)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 9/61

The Instructions

1 Move alternatingly the smallest disk and another one.

2 If moving the smallest disk put it on the stack it did not come
from in its previous move.

3 If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

moveS ; moveO ; moveS ; moveO ; . . .

more concisely:
(moveS ; moveO)∗

improved:

moveS ; testForStop ; (moveO ; moveS ; testForStop)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 9/61

The Instructions

1 Move alternatingly the smallest disk and another one.

2 If moving the smallest disk put it on the stack it did not come
from in its previous move.

3 If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

moveS ; moveO ; moveS ; moveO ; . . .

more concisely:
(moveS ; moveO)∗

improved:

moveS ; testForStop ; (moveO ; moveS ; testForStop)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 9/61

The Instructions

1 Move alternatingly the smallest disk and another one.

2 If moving the smallest disk put it on the stack it did not come
from in its previous move.

3 If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

moveS ; moveO ; moveS ; moveO ; . . .

more concisely:
(moveS ; moveO)∗

improved:

moveS ; testForStop ; (moveO ; moveS ; testForStop)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 9/61

The Instructions

1 Move alternatingly the smallest disk and another one.

2 If moving the smallest disk put it on the stack it did not come
from in its previous move.

3 If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

moveS ; moveO ; moveS ; moveO ; . . .

more concisely:
(moveS ; moveO)∗

improved:

moveS ; testForStop ; (moveO ; moveS ; testForStop)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 9/61

The Instructions

1 Move alternatingly the smallest disk and another one.

2 If moving the smallest disk put it on the stack it did not come
from in its previous move.

3 If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

moveS ; moveO ; moveS ; moveO ; . . .

more concisely:
(moveS ; moveO)∗

improved:

moveS ; testForStop ; (moveO ; moveS ; testForStop)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 9/61

Properties

Atomic statement: S1 true iff smallest piece on first stack

Moving away

(1) S1→ 〈moveS〉¬S1
... after moving the smallest, it is no longer on the first stack

Moving other

(2) S1→ 〈moveO〉S1
... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

S1→ 〈moveO ; moveS〉¬S1
S1→ 〈(moveO)∗ ; moveS〉¬S1

THAT IS DYNAMIC LOGIC

Beckert, Ulbrich – Formale Systeme II: Theorie 10/61

Properties

Atomic statement: S1 true iff smallest piece on first stack

Moving away

(1) S1→ 〈moveS〉¬S1
... after moving the smallest, it is no longer on the first stack

Moving other

(2) S1→ 〈moveO〉S1
... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

S1→ 〈moveO ; moveS〉¬S1
S1→ 〈(moveO)∗ ; moveS〉¬S1

THAT IS DYNAMIC LOGIC

Beckert, Ulbrich – Formale Systeme II: Theorie 10/61

Properties

Atomic statement: S1 true iff smallest piece on first stack

Moving away

(1) S1→ 〈moveS〉¬S1
... after moving the smallest, it is no longer on the first stack

Moving other

(2) S1→ 〈moveO〉S1
... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

S1→ 〈moveO ; moveS〉¬S1
S1→ 〈(moveO)∗ ; moveS〉¬S1

THAT IS DYNAMIC LOGIC

Beckert, Ulbrich – Formale Systeme II: Theorie 10/61

Properties

Atomic statement: S1 true iff smallest piece on first stack

Moving away

(1) S1→ 〈moveS〉¬S1
... after moving the smallest, it is no longer on the first stack

Moving other

(2) S1→ 〈moveO〉S1
... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

S1→ 〈moveO ; moveS〉¬S1
S1→ 〈(moveO)∗ ; moveS〉¬S1

THAT IS DYNAMIC LOGIC

Beckert, Ulbrich – Formale Systeme II: Theorie 10/61

Properties

Atomic statement: S1 true iff smallest piece on first stack

Moving away

(1) S1→ 〈moveS〉¬S1
... after moving the smallest, it is no longer on the first stack

Moving other

(2) S1→ 〈moveO〉S1
... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

S1→ 〈moveO ; moveS〉¬S1
S1→ 〈(moveO)∗ ; moveS〉¬S1

THAT IS DYNAMIC LOGIC

Beckert, Ulbrich – Formale Systeme II: Theorie 10/61

Recap: Modal Logic

Beckert, Ulbrich – Formale Systeme II: Theorie 11/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

Signature Σ: set of propositional variables

Fmlmod
Σ smallest set with:

Σ ⊆ Fmlmod
Σ

true, false ∈ Fmlmod
Σ

A,B ∈ Fmlmod
Σ =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ Fmlmod

Σ

A ∈ Fmlmod
Σ =⇒ �A,♦A ∈ Fmlmod

Σ

pronounced “Box” and “Diamond”

Beckert, Ulbrich – Formale Systeme II: Theorie 12/61

Recap: Modal Logic – Semantics

Kripke Semantics

Modal logic formulas are interpreted in a system of multiple
possible worlds and an accessibility relation between them.

Kripke Frame (S ,R):

Set S of worlds (or states)

Relation R ⊆ S × S , the accessibility relation

Kripke Structure (S ,R, I):

Given a signature Σ

Kripke Frame (S ,R)

Interpretation I : S → 2Σ

Beckert, Ulbrich – Formale Systeme II: Theorie 13/61

Recap: Modal Logic – Semantics

Kripke Semantics

Modal logic formulas are interpreted in a system of multiple
possible worlds and an accessibility relation between them.

Kripke Frame (S ,R):

Set S of worlds (or states)

Relation R ⊆ S × S , the accessibility relation

Kripke Structure (S ,R, I):

Given a signature Σ

Kripke Frame (S ,R)

Interpretation I : S → 2Σ

Beckert, Ulbrich – Formale Systeme II: Theorie 13/61

Recap: Modal Logic – Semantics

Kripke Semantics

Modal logic formulas are interpreted in a system of multiple
possible worlds and an accessibility relation between them.

Kripke Frame (S ,R):

Set S of worlds (or states)

Relation R ⊆ S × S , the accessibility relation

Kripke Structure (S ,R, I):

Given a signature Σ

Kripke Frame (S ,R)

Interpretation I : S → 2Σ

Beckert, Ulbrich – Formale Systeme II: Theorie 13/61

Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S ,R, I)

I , s |= ϕ ⇐⇒ Formula ϕ holds in state s ∈ S
I |= ϕ ⇐⇒ Formula ϕ holds in all states s ∈ S

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= �ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ R

I , s |= ♦ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ R

Beckert, Ulbrich – Formale Systeme II: Theorie 14/61

Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S ,R, I)

I , s |= ϕ ⇐⇒ Formula ϕ holds in state s ∈ S
I |= ϕ ⇐⇒ Formula ϕ holds in all states s ∈ S

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.
This means: I , s |= ϕ ∧ ψ ⇐⇒ I , s |= ϕ and I , s |= ψ

I , s |= ϕ ∨ ψ ⇐⇒ I , s |= ϕ or I , s |= ψ
I , s |= ϕ→ ψ ⇐⇒ I , s |= ϕ implies I , s |= ψ
I , s |= ¬ϕ ⇐⇒ not I , s |= ϕ

I , s |= �ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ R

I , s |= ♦ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ R

Beckert, Ulbrich – Formale Systeme II: Theorie 14/61

Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S ,R, I)

I , s |= ϕ ⇐⇒ Formula ϕ holds in state s ∈ S
I |= ϕ ⇐⇒ Formula ϕ holds in all states s ∈ S

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= �ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ R

I , s |= ♦ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ R

Beckert, Ulbrich – Formale Systeme II: Theorie 14/61

Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S ,R, I)

I , s |= ϕ ⇐⇒ Formula ϕ holds in state s ∈ S
I |= ϕ ⇐⇒ Formula ϕ holds in all states s ∈ S

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= �ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ R

I , s |= ♦ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ R

Beckert, Ulbrich – Formale Systeme II: Theorie 14/61

Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S ,R, I)

I , s |= ϕ ⇐⇒ Formula ϕ holds in state s ∈ S
I |= ϕ ⇐⇒ Formula ϕ holds in all states s ∈ S

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= �ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ R

I , s |= ♦ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ R

Beckert, Ulbrich – Formale Systeme II: Theorie 14/61

Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S ,R, I)

I , s |= ϕ ⇐⇒ Formula ϕ holds in state s ∈ S
I |= ϕ ⇐⇒ Formula ϕ holds in all states s ∈ S

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= �ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ R

I , s |= ♦ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ R

Beckert, Ulbrich – Formale Systeme II: Theorie 14/61

Recap: Modal Logic – Semantics

Applications of modal logics

Logics of necessity and possibility – philosophy.

Meaning of Modalities:

Modal
�A It is necessary that . . .
♦A It is possible that . . .

Deontic (from Greek for duty)
�A It is obligatory that . . .
♦A It is permitted that . . .

Epistemic (logic of knowledge)
�A I know that . . .
♦A I consider it possible that . . .

Unified Semantics

Saul Kripke defined unified
semantics for all “meanings”
of modal operators in 1960s.

Beckert, Ulbrich – Formale Systeme II: Theorie 15/61

Recap: Modal Logic – Semantics

Applications of modal logics

Logics of necessity and possibility – philosophy.

Meaning of Modalities:

Modal
�A It is necessary that . . .
♦A It is possible that . . .

Deontic (from Greek for duty)
�A It is obligatory that . . .
♦A It is permitted that . . .

Epistemic (logic of knowledge)
�A I know that . . .
♦A I consider it possible that . . .

Unified Semantics

Saul Kripke defined unified
semantics for all “meanings”
of modal operators in 1960s.

Beckert, Ulbrich – Formale Systeme II: Theorie 15/61

Recap: Modal Logic – Semantics

Applications of modal logics

Logics of necessity and possibility – philosophy.

Meaning of Modalities:

Modal
�A It is necessary that . . .
♦A It is possible that . . .

Deontic (from Greek for duty)
�A It is obligatory that . . .
♦A It is permitted that . . .

Epistemic (logic of knowledge)
�A I know that . . .
♦A I consider it possible that . . .

Unified Semantics

Saul Kripke defined unified
semantics for all “meanings”
of modal operators in 1960s.

Beckert, Ulbrich – Formale Systeme II: Theorie 15/61

Recap: Modal Logic – Semantics

Applications of modal logics

Logics of necessity and possibility – philosophy.

Meaning of Modalities:

Modal
�A It is necessary that . . .
♦A It is possible that . . .

Deontic (from Greek for duty)
�A It is obligatory that . . .
♦A It is permitted that . . .

Epistemic (logic of knowledge)
�A I know that . . .
♦A I consider it possible that . . .

Unified Semantics

Saul Kripke defined unified
semantics for all “meanings”
of modal operators in 1960s.

Beckert, Ulbrich – Formale Systeme II: Theorie 15/61

Recap: Modal Logic – Semantics

Applications of modal logics

Logics of necessity and possibility – philosophy.

Meaning of Modalities:

Modal
�A It is necessary that . . .
♦A It is possible that . . .

Deontic (from Greek for duty)
�A It is obligatory that . . .
♦A It is permitted that . . .

Epistemic (logic of knowledge)
�A I know that . . .
♦A I consider it possible that . . .

Unified Semantics

Saul Kripke defined unified
semantics for all “meanings”
of modal operators in 1960s.

Beckert, Ulbrich – Formale Systeme II: Theorie 15/61

Dynamic Logic

Beckert, Ulbrich – Formale Systeme II: Theorie 16/61

Dynamic Logic

“Dynamic”: systematically changing evaluation context
(by programs)

“Programs” are composite actions

State change descriptions are explicit part of the logical
language.
There are two interdependent “sublanguages”:

1 Formulas
2 Programs

Extends modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 17/61

Dynamic Logic

“Dynamic”: systematically changing evaluation context
(by programs)

“Programs” are composite actions

State change descriptions are explicit part of the logical
language.
There are two interdependent “sublanguages”:

1 Formulas
2 Programs

Extends modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 17/61

Dynamic Logic

“Dynamic”: systematically changing evaluation context
(by programs)

“Programs” are composite actions

State change descriptions are explicit part of the logical
language.
There are two interdependent “sublanguages”:

1 Formulas
2 Programs

Extends modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 17/61

Dynamic Logic

“Dynamic”: systematically changing evaluation context
(by programs)

“Programs” are composite actions

State change descriptions are explicit part of the logical
language.
There are two interdependent “sublanguages”:

1 Formulas

2 Programs

Extends modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 17/61

Dynamic Logic

“Dynamic”: systematically changing evaluation context
(by programs)

“Programs” are composite actions

State change descriptions are explicit part of the logical
language.
There are two interdependent “sublanguages”:

1 Formulas
2 Programs

Extends modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 17/61

Dynamic Logic

“Dynamic”: systematically changing evaluation context
(by programs)

“Programs” are composite actions

State change descriptions are explicit part of the logical
language.
There are two interdependent “sublanguages”:

1 Formulas
2 Programs

Extends modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 17/61

More than one modality

Multi-modal logic

Have different Box operators with different accessibility relations:

�α,�β,�γ , . . .

(→ basic actions ins “Towers of Hanoi”)

Propositional Dynamic Logic (PDL):

Signature Σ of propositional variables

Set A = {α, β, . . .} of atomic actions
/

programs

We write [α] instead of �α

Beckert, Ulbrich – Formale Systeme II: Theorie 18/61

More than one modality

Multi-modal logic

Have different Box operators with different accessibility relations:

�α,�β,�γ , . . .

(→ basic actions ins “Towers of Hanoi”)

Propositional Dynamic Logic (PDL):

Signature Σ of propositional variables

Set A = {α, β, . . .} of atomic actions
/

programs

We write [α] instead of �α

Beckert, Ulbrich – Formale Systeme II: Theorie 18/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Regular Programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A,
the set of programs ΠΣ,A is the smallest set such that

1 A ⊆ ΠΣ,A atomic programs

2 p, q ∈ ΠΣ,A =⇒ (p ; q) ∈ ΠΣ,A sequential composition

3 p, q ∈ ΠΣ,A =⇒ (p ∪ q) ∈ ΠΣ,A nondeterministic choice

4 p ∈ ΠΣ,A =⇒ p∗ ∈ ΠΣ,A indeterminate iteration

5 F ∈ FmlPDL
Σ,A =⇒ ?F ∈ ΠΣ,A tests

Regular Programs =
Regular Expressions over atomic programs and tests

Beckert, Ulbrich – Formale Systeme II: Theorie 19/61

PDL – Formulae

For a given signature Σ and atomic programs A,
the set of formulae FmlPDL

Σ,A is the smallest set such that

1 true, false ∈ FmlPDL
Σ,A

2 Σ ⊆ FmlPDL
Σ,A

3 A,B ∈ FmlPDL
Σ,A =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ FmlPDL

Σ,A

4 P ∈ ΠΣ,A, ϕ ∈ FmlPDL
Σ,A =⇒ [P]ϕ, 〈P〉ϕ ∈ FmlPDL

Σ,A

Programs and Formulae are mutually dependent definitions and
must be seen simultaneously.

Beckert, Ulbrich – Formale Systeme II: Theorie 20/61

PDL – Formulae

For a given signature Σ and atomic programs A,
the set of formulae FmlPDL

Σ,A is the smallest set such that

1 true, false ∈ FmlPDL
Σ,A

2 Σ ⊆ FmlPDL
Σ,A

3 A,B ∈ FmlPDL
Σ,A =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ FmlPDL

Σ,A

4 P ∈ ΠΣ,A, ϕ ∈ FmlPDL
Σ,A =⇒ [P]ϕ, 〈P〉ϕ ∈ FmlPDL

Σ,A

Programs and Formulae are mutually dependent definitions and
must be seen simultaneously.

Beckert, Ulbrich – Formale Systeme II: Theorie 20/61

PDL – Formulae

For a given signature Σ and atomic programs A,
the set of formulae FmlPDL

Σ,A is the smallest set such that

1 true, false ∈ FmlPDL
Σ,A

2 Σ ⊆ FmlPDL
Σ,A

3 A,B ∈ FmlPDL
Σ,A =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ FmlPDL

Σ,A

4 P ∈ ΠΣ,A, ϕ ∈ FmlPDL
Σ,A =⇒ [P]ϕ, 〈P〉ϕ ∈ FmlPDL

Σ,A

Programs and Formulae are mutually dependent definitions and
must be seen simultaneously.

Beckert, Ulbrich – Formale Systeme II: Theorie 20/61

PDL – Formulae

For a given signature Σ and atomic programs A,
the set of formulae FmlPDL

Σ,A is the smallest set such that

1 true, false ∈ FmlPDL
Σ,A

2 Σ ⊆ FmlPDL
Σ,A

3 A,B ∈ FmlPDL
Σ,A =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ FmlPDL

Σ,A

4 P ∈ ΠΣ,A, ϕ ∈ FmlPDL
Σ,A =⇒ [P]ϕ, 〈P〉ϕ ∈ FmlPDL

Σ,A

Programs and Formulae are mutually dependent definitions and
must be seen simultaneously.

Beckert, Ulbrich – Formale Systeme II: Theorie 20/61

PDL – Formulae

For a given signature Σ and atomic programs A,
the set of formulae FmlPDL

Σ,A is the smallest set such that

1 true, false ∈ FmlPDL
Σ,A

2 Σ ⊆ FmlPDL
Σ,A

3 A,B ∈ FmlPDL
Σ,A =⇒ A ∧ B,A ∨ B,A→ B,¬A ∈ FmlPDL

Σ,A

4 P ∈ ΠΣ,A, ϕ ∈ FmlPDL
Σ,A =⇒ [P]ϕ, 〈P〉ϕ ∈ FmlPDL

Σ,A

Programs and Formulae are mutually dependent definitions and
must be seen simultaneously.

Beckert, Ulbrich – Formale Systeme II: Theorie 20/61

PDL Formulas – Examples

→ Towers of Hanoi

A = {moveS ,moveO}, Σ = {S1}
S1→ 〈(moveO)∗ ; moveS〉¬S1

multi-level and nested modalities

A = {α, β}, Σ = {P,Q}

[α ∪ (?P ; β)∗]Q

[α]P → [α∗]P

[α]〈β〉
(
P → [α∗]Q

)
[α ; ?〈β〉P ; β]Q

Beckert, Ulbrich – Formale Systeme II: Theorie 21/61

PDL Formulas – Examples

→ Towers of Hanoi

A = {moveS ,moveO}, Σ = {S1}
S1→ 〈(moveO)∗ ; moveS〉¬S1

multi-level and nested modalities

A = {α, β}, Σ = {P,Q}

[α ∪ (?P ; β)∗]Q

[α]P → [α∗]P

[α]〈β〉
(
P → [α∗]Q

)
[α ; ?〈β〉P ; β]Q

Beckert, Ulbrich – Formale Systeme II: Theorie 21/61

PDL – Semantics

Given a signature Σ and atomic programs A

(multi-modal propositional) Kripke frame (S , ρ)

set of states S

function ρ : A→ 2S×S accessibility relations for atomic
programs

Kripke structure (S , ρ, I)

Kripke frame (S , ρ)

interpretation I : S → 2Σ

⇒ same as for modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 22/61

PDL – Semantics

Given a signature Σ and atomic programs A

(multi-modal propositional) Kripke frame (S , ρ)

set of states S

function ρ : A→ 2S×S accessibility relations for atomic
programs

Kripke structure (S , ρ, I)

Kripke frame (S , ρ)

interpretation I : S → 2Σ

⇒ same as for modal logic

Beckert, Ulbrich – Formale Systeme II: Theorie 22/61

PDL – Program Semantics

Extension of ρ

from ρ : A→ 2S
2

to ρ : ΠΣ,A → 2S
2

ρ(α) base case for α ∈ A

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2)
= {(s, s ′) | ex. t with (s, t) ∈ ρ(π1) and (t, s ′) ∈ ρ(π2)}

ρ(π∗) = rtcl(ρ(π)) =
⋃∞

n=0 ρ(π)n refl. transitive closure
= {(s0, sn) | ex. n with (si , si+1) ∈ ρ(π) for 0 ≤ i < n}

ρ(?F) = {(s, s) | I , s |= F}

Beckert, Ulbrich – Formale Systeme II: Theorie 23/61

PDL – Program Semantics

Extension of ρ

from ρ : A→ 2S
2

to ρ : ΠΣ,A → 2S
2

ρ(α) base case for α ∈ A

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2)
= {(s, s ′) | ex. t with (s, t) ∈ ρ(π1) and (t, s ′) ∈ ρ(π2)}

ρ(π∗) = rtcl(ρ(π)) =
⋃∞

n=0 ρ(π)n refl. transitive closure
= {(s0, sn) | ex. n with (si , si+1) ∈ ρ(π) for 0 ≤ i < n}

ρ(?F) = {(s, s) | I , s |= F}

Beckert, Ulbrich – Formale Systeme II: Theorie 23/61

PDL – Program Semantics

Extension of ρ

from ρ : A→ 2S
2

to ρ : ΠΣ,A → 2S
2

ρ(α) base case for α ∈ A

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2)
= {(s, s ′) | ex. t with (s, t) ∈ ρ(π1) and (t, s ′) ∈ ρ(π2)}

ρ(π∗) = rtcl(ρ(π)) =
⋃∞

n=0 ρ(π)n refl. transitive closure
= {(s0, sn) | ex. n with (si , si+1) ∈ ρ(π) for 0 ≤ i < n}

ρ(?F) = {(s, s) | I , s |= F}

Beckert, Ulbrich – Formale Systeme II: Theorie 23/61

PDL – Program Semantics

Extension of ρ

from ρ : A→ 2S
2

to ρ : ΠΣ,A → 2S
2

ρ(α) base case for α ∈ A

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2)
= {(s, s ′) | ex. t with (s, t) ∈ ρ(π1) and (t, s ′) ∈ ρ(π2)}

ρ(π∗) = rtcl(ρ(π)) =
⋃∞

n=0 ρ(π)n refl. transitive closure
= {(s0, sn) | ex. n with (si , si+1) ∈ ρ(π) for 0 ≤ i < n}

ρ(?F) = {(s, s) | I , s |= F}

Beckert, Ulbrich – Formale Systeme II: Theorie 23/61

PDL – Program Semantics

Extension of ρ

from ρ : A→ 2S
2

to ρ : ΠΣ,A → 2S
2

ρ(α) base case for α ∈ A

ρ(π1 ∪ π2) = ρ(π1) ∪ ρ(π2)

ρ(π1 ; π2) = ρ(π1) ; ρ(π2)
= {(s, s ′) | ex. t with (s, t) ∈ ρ(π1) and (t, s ′) ∈ ρ(π2)}

ρ(π∗) = rtcl(ρ(π)) =
⋃∞

n=0 ρ(π)n refl. transitive closure
= {(s0, sn) | ex. n with (si , si+1) ∈ ρ(π) for 0 ≤ i < n}

ρ(?F) = {(s, s) | I , s |= F}

Beckert, Ulbrich – Formale Systeme II: Theorie 23/61

PDL – Semantics

For a signature Σ, basic programs A and Kripke structure (S , ρ, I)

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= [π]ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 24/61

PDL – Semantics

For a signature Σ, basic programs A and Kripke structure (S , ρ, I)

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= [π]ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 24/61

PDL – Semantics

For a signature Σ, basic programs A and Kripke structure (S , ρ, I)

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= [π]ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 24/61

PDL – Semantics

For a signature Σ, basic programs A and Kripke structure (S , ρ, I)

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= [π]ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 24/61

PDL – Semantics

For a signature Σ, basic programs A and Kripke structure (S , ρ, I)

I , s |= p ⇐⇒ p ∈ I (s) for p ∈ Σ

|= is as expected for ∧,∨,→,¬.

I , s |= [π]ϕ ⇐⇒ I , s ′ |= ϕ for all s ′ ∈ S with (s, s ′) ∈ ρ(π)

I , s |= 〈π〉ϕ ⇐⇒ I , s ′ |= ϕ for some s ′ ∈ S with (s, s ′) ∈ ρ(π)

Beckert, Ulbrich – Formale Systeme II: Theorie 24/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ

〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ

〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ

〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

Tautologies

Dual operators

[π]ϕ ↔ ¬〈π〉¬ϕ

[π1 ; π2]ϕ ↔ [π1][π2]ϕ

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

[?ψ]ϕ ↔ ψ → ϕ

[π∗]ϕ ↔ ϕ ∧ [π ; π∗]ϕ

〈π1 ; π2〉ϕ ↔ 〈π1〉〈π2〉ϕ
〈π1 ∪ π2〉ϕ ↔ 〈π1〉ϕ ∨ 〈π2〉ϕ
〈?ψ〉ϕ ↔ ψ ∧ ϕ
〈π∗〉ϕ ↔ ϕ ∨ 〈π ; π∗〉ϕ

all tautologies for modal logic K

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61

A Calculus for Propositional Dynamic Logic

Axioms

All propositional tautologies
[π](ϕ→ ψ) → ([π]ϕ→ [π]ψ) (ML1 = K)
[π](ϕ ∧ ψ) ↔ [π]ϕ ∧ [π]ψ (ML2)
[π1;π2]ϕ ↔ [π1][π2]ϕ (PDL1)
[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ (PDL2)
[?ϕ]ψ ↔ ϕ→ ψ (PDL3)
[π∗]ϕ ↔ ϕ ∧ [π][π∗]ϕ (PDL4)
ϕ ∧ [π∗](ϕ→ [π]ϕ) → [π∗]ϕ (IND)

Rules
ϕ, ϕ→ ψ

ψ
(MP)

ϕ

[π]ϕ
(GEN)

Beckert, Ulbrich – Formale Systeme II: Theorie 26/61

Theorem

Theorem

The presented calculus is sound and complete.

Proof

See e.g.,pp. 559-560
in David Harel’s article Dynamic Logic
in the Handbook of Philosophical Logic, Volume II,
published by D.Reidel in 1984.

or

D. Harel, D. Kozen and J. Tiuryn
Dynamic Logic
in Handbook of Philosophical Logic, 2nd edition , volume 4
by Kluwer Academic Publisher, 2001.

Beckert, Ulbrich – Formale Systeme II: Theorie 27/61

Theorem

Theorem

The presented calculus is sound and complete.

Proof

See e.g.,pp. 559-560
in David Harel’s article Dynamic Logic
in the Handbook of Philosophical Logic, Volume II,
published by D.Reidel in 1984.

or

D. Harel, D. Kozen and J. Tiuryn
Dynamic Logic
in Handbook of Philosophical Logic, 2nd edition , volume 4
by Kluwer Academic Publisher, 2001.

Beckert, Ulbrich – Formale Systeme II: Theorie 27/61

Theorem

Theorem

The presented calculus is sound and complete.

Proof

See e.g.,pp. 559-560
in David Harel’s article Dynamic Logic
in the Handbook of Philosophical Logic, Volume II,
published by D.Reidel in 1984.

or

D. Harel, D. Kozen and J. Tiuryn
Dynamic Logic
in Handbook of Philosophical Logic, 2nd edition , volume 4
by Kluwer Academic Publisher, 2001.

Beckert, Ulbrich – Formale Systeme II: Theorie 27/61

Theorem

Theorem

The presented calculus is sound and complete.

Proof

See e.g.,pp. 559-560
in David Harel’s article Dynamic Logic
in the Handbook of Philosophical Logic, Volume II,
published by D.Reidel in 1984.

or

D. Harel, D. Kozen and J. Tiuryn
Dynamic Logic
in Handbook of Philosophical Logic, 2nd edition , volume 4
by Kluwer Academic Publisher, 2001.

Beckert, Ulbrich – Formale Systeme II: Theorie 27/61

Higher level program constructors

Syntactic Sugar

PDL syntax has elementary program operators

Enrich it by defining new operators (“macros”)

skip := ?true

fail := ?false

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 28/61

Higher level program constructors

Syntactic Sugar

PDL syntax has elementary program operators

Enrich it by defining new operators (“macros”)

skip := ?true

fail := ?false

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 28/61

Higher level program constructors

Syntactic Sugar

PDL syntax has elementary program operators

Enrich it by defining new operators (“macros”)

skip := ?true

fail := ?false

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 28/61

Higher level program constructors

Syntactic Sugar

PDL syntax has elementary program operators

Enrich it by defining new operators (“macros”)

skip := ?true

fail := ?false

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)

while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 28/61

Higher level program constructors

Syntactic Sugar

PDL syntax has elementary program operators

Enrich it by defining new operators (“macros”)

skip := ?true

fail := ?false

if ϕ then α else β :=
(
?ϕ ; α

)
∪
(
?¬ϕ ; β

)
while ϕ do α := (?ϕ ; α)∗ ; ?¬ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 28/61

More PDL Tautologies

[skip]ϕ ↔ ϕ

〈skip〉ϕ ↔ ϕ

[fail]ϕ ↔ true

〈fail〉ϕ ↔ false

[if ϕ then α else β]ψ ↔ (ϕ→ [α]ψ) ∧ (¬ϕ→ [β]ψ)

〈if ϕ then α else β〉ψ ↔ (ϕ→ 〈α〉ψ) ∧ (¬ϕ→ 〈β〉ψ)

Beckert, Ulbrich – Formale Systeme II: Theorie 29/61

More PDL Tautologies

[skip]ϕ ↔ ϕ

〈skip〉ϕ ↔ ϕ

[fail]ϕ ↔ true

〈fail〉ϕ ↔ false

[if ϕ then α else β]ψ ↔ (ϕ→ [α]ψ) ∧ (¬ϕ→ [β]ψ)

〈if ϕ then α else β〉ψ ↔ (ϕ→ 〈α〉ψ) ∧ (¬ϕ→ 〈β〉ψ)

Beckert, Ulbrich – Formale Systeme II: Theorie 29/61

More PDL Tautologies

[skip]ϕ ↔ ϕ

〈skip〉ϕ ↔ ϕ

[fail]ϕ ↔ true

〈fail〉ϕ ↔ false

[if ϕ then α else β]ψ ↔ (ϕ→ [α]ψ) ∧ (¬ϕ→ [β]ψ)

〈if ϕ then α else β〉ψ ↔ (ϕ→ 〈α〉ψ) ∧ (¬ϕ→ 〈β〉ψ)

Beckert, Ulbrich – Formale Systeme II: Theorie 29/61

More PDL Tautologies

[skip]ϕ ↔ ϕ

〈skip〉ϕ ↔ ϕ

[fail]ϕ ↔ true

〈fail〉ϕ ↔ false

[if ϕ then α else β]ψ ↔ (ϕ→ [α]ψ) ∧ (¬ϕ→ [β]ψ)

〈if ϕ then α else β〉ψ ↔ (ϕ→ 〈α〉ψ) ∧ (¬ϕ→ 〈β〉ψ)

Beckert, Ulbrich – Formale Systeme II: Theorie 29/61

More PDL Tautologies

[skip]ϕ ↔ ϕ

〈skip〉ϕ ↔ ϕ

[fail]ϕ ↔ true

〈fail〉ϕ ↔ false

[if ϕ then α else β]ψ ↔ (ϕ→ [α]ψ) ∧ (¬ϕ→ [β]ψ)

〈if ϕ then α else β〉ψ ↔ (ϕ→ 〈α〉ψ) ∧ (¬ϕ→ 〈β〉ψ)

Beckert, Ulbrich – Formale Systeme II: Theorie 29/61

More PDL Tautologies

[skip]ϕ ↔ ϕ

〈skip〉ϕ ↔ ϕ

[fail]ϕ ↔ true

〈fail〉ϕ ↔ false

[if ϕ then α else β]ψ ↔ (ϕ→ [α]ψ) ∧ (¬ϕ→ [β]ψ)

〈if ϕ then α else β〉ψ ↔ (ϕ→ 〈α〉ψ) ∧ (¬ϕ→ 〈β〉ψ)

Beckert, Ulbrich – Formale Systeme II: Theorie 29/61

More PDL Tautologies

[skip]ϕ ↔ ϕ

〈skip〉ϕ ↔ ϕ

[fail]ϕ ↔ true

〈fail〉ϕ ↔ false

[if ϕ then α else β]ψ ↔ (ϕ→ [α]ψ) ∧ (¬ϕ→ [β]ψ)

〈if ϕ then α else β〉ψ ↔ (ϕ→ 〈α〉ψ) ∧ (¬ϕ→ 〈β〉ψ)

Beckert, Ulbrich – Formale Systeme II: Theorie 29/61

Decidability

Beckert, Ulbrich – Formale Systeme II: Theorie 30/61

Decidability

Is PDL decidable?

⇐⇒
Is there an algorithm that terminates on every input and computes
whether a PDL-formula φ ∈ FmlPDL

Σ,A is satisfiable.

⇐⇒
Is there an algorithm that terminates on every input and computes
whether a PDL-formula φ ∈ FmlPDL

Σ,A is valid.

Answer:

YES, PDL is decidable!

Beckert, Ulbrich – Formale Systeme II: Theorie 31/61

Decidability

Is PDL decidable?

⇐⇒
Is there an algorithm that terminates on every input and computes
whether a PDL-formula φ ∈ FmlPDL

Σ,A is satisfiable.

⇐⇒
Is there an algorithm that terminates on every input and computes
whether a PDL-formula φ ∈ FmlPDL

Σ,A is valid.

Answer:

YES, PDL is decidable!

Beckert, Ulbrich – Formale Systeme II: Theorie 31/61

Decidability

Is PDL decidable?

⇐⇒
Is there an algorithm that terminates on every input and computes
whether a PDL-formula φ ∈ FmlPDL

Σ,A is satisfiable.

⇐⇒
Is there an algorithm that terminates on every input and computes
whether a PDL-formula φ ∈ FmlPDL

Σ,A is valid.

Answer:

YES, PDL is decidable!

Beckert, Ulbrich – Formale Systeme II: Theorie 31/61

Fischer and Ladner (1979)

General Idea:

ϕ ∈ FmlPDL has a model ⇐⇒ ϕ has a model of bounded size.

For every Kripke structure, a bounded Kripke structure can be
defined which is indistinguishable for ϕ.

Preliminary lemma: Decidability for modal logic

The proof idea is the same, yet simpler.

Beckert, Ulbrich – Formale Systeme II: Theorie 32/61

Fischer and Ladner (1979)

General Idea:

ϕ ∈ FmlPDL has a model ⇐⇒ ϕ has a model of bounded size.

For every Kripke structure, a bounded Kripke structure can be
defined which is indistinguishable for ϕ.

Preliminary lemma: Decidability for modal logic

The proof idea is the same, yet simpler.

Beckert, Ulbrich – Formale Systeme II: Theorie 32/61

Fischer-Ladner Closure

Reduced syntax

Only connectors →, false,� are allowed ⇒ simplifies proofs.

Operator

FLmod : Fmlmod → 2Fmlmod

assigns to ϕ the set of subformulas of ϕ.

FLmod(ϕ→ ψ) = {ϕ→ ψ} ∪ FLmod(ϕ) ∪ FLmod(ψ)

FLmod(false) = {false}
FLmod(p) = {p} p ∈ Σ

FLmod(�ϕ) = {�ϕ} ∪ FLmod(ϕ)

Observation

|FLmod(ϕ)| ≤ |ϕ|

Beckert, Ulbrich – Formale Systeme II: Theorie 33/61

Fischer-Ladner Closure

Reduced syntax

Only connectors →, false,� are allowed ⇒ simplifies proofs.

Operator

FLmod : Fmlmod → 2Fmlmod

assigns to ϕ the set of subformulas of ϕ.

FLmod(ϕ→ ψ) = {ϕ→ ψ} ∪ FLmod(ϕ) ∪ FLmod(ψ)

FLmod(false) = {false}
FLmod(p) = {p} p ∈ Σ

FLmod(�ϕ) = {�ϕ} ∪ FLmod(ϕ)

Observation

|FLmod(ϕ)| ≤ |ϕ|

Beckert, Ulbrich – Formale Systeme II: Theorie 33/61

Fischer-Ladner Closure

Reduced syntax

Only connectors →, false,� are allowed ⇒ simplifies proofs.

Operator

FLmod : Fmlmod → 2Fmlmod

assigns to ϕ the set of subformulas of ϕ.

FLmod(ϕ→ ψ) = {ϕ→ ψ} ∪ FLmod(ϕ) ∪ FLmod(ψ)

FLmod(false) = {false}
FLmod(p) = {p} p ∈ Σ

FLmod(�ϕ) = {�ϕ} ∪ FLmod(ϕ)

Observation

|FLmod(ϕ)| ≤ |ϕ|

Beckert, Ulbrich – Formale Systeme II: Theorie 33/61

Fischer-Ladner Closure

Reduced syntax

Only connectors →, false,� are allowed ⇒ simplifies proofs.

Operator

FLmod : Fmlmod → 2Fmlmod

assigns to ϕ the set of subformulas of ϕ.

FLmod(ϕ→ ψ) = {ϕ→ ψ} ∪ FLmod(ϕ) ∪ FLmod(ψ)

FLmod(false) = {false}
FLmod(p) = {p} p ∈ Σ

FLmod(�ϕ) = {�ϕ} ∪ FLmod(ϕ)

Observation

|FLmod(ϕ)| ≤ |ϕ|

Beckert, Ulbrich – Formale Systeme II: Theorie 33/61

Filtration for modal logic

Filtration

For a Kripke structure S ,R, I define a bounded structure S̃ , R̃, Ĩ
with S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Central Idea

States are undistinguishable for ϕ if they are equal on FLmod(ϕ).

s ≡ t ⇐⇒ (I , s |= ψ ⇔ I , t |= ψ for all ψ ∈ FLmod(ϕ))

s̃ := {s ′ | s ′ ≡ s} . . . equivalence classes

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, s̃ ′) | (s, s ′) ∈ R}

Ĩ (s̃) := I (s)

Beckert, Ulbrich – Formale Systeme II: Theorie 34/61

Filtration for modal logic

Filtration

For a Kripke structure S ,R, I define a bounded structure S̃ , R̃, Ĩ
with S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Central Idea

States are undistinguishable for ϕ if they are equal on FLmod(ϕ).

s ≡ t ⇐⇒ (I , s |= ψ ⇔ I , t |= ψ for all ψ ∈ FLmod(ϕ))

s̃ := {s ′ | s ′ ≡ s} . . . equivalence classes

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, s̃ ′) | (s, s ′) ∈ R}

Ĩ (s̃) := I (s)

Beckert, Ulbrich – Formale Systeme II: Theorie 34/61

Filtration for modal logic

Filtration

For a Kripke structure S ,R, I define a bounded structure S̃ , R̃, Ĩ
with S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Central Idea

States are undistinguishable for ϕ if they are equal on FLmod(ϕ).

s ≡ t ⇐⇒ (I , s |= ψ ⇔ I , t |= ψ for all ψ ∈ FLmod(ϕ))

s̃ := {s ′ | s ′ ≡ s} . . . equivalence classes

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, s̃ ′) | (s, s ′) ∈ R}

Ĩ (s̃) := I (s)

Beckert, Ulbrich – Formale Systeme II: Theorie 34/61

Filtration for modal logic

Filtration

For a Kripke structure S ,R, I define a bounded structure S̃ , R̃, Ĩ
with S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Central Idea

States are undistinguishable for ϕ if they are equal on FLmod(ϕ).

s ≡ t ⇐⇒ (I , s |= ψ ⇔ I , t |= ψ for all ψ ∈ FLmod(ϕ))

s̃ := {s ′ | s ′ ≡ s} . . . equivalence classes

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, s̃ ′) | (s, s ′) ∈ R}

Ĩ (s̃) := I (s)

Beckert, Ulbrich – Formale Systeme II: Theorie 34/61

Fischer-Ladner Filtration

s̃ := {s ′ | s ′ ≡ s}

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, t̃) | (s, t) ∈ R}

Ĩ (s̃) := I (s)

Lemma

|S̃ | ≤ 2|FL
mod (ϕ)| ≤ 2|ϕ|

Lemma (proved by structural induction)

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Theorem (small model property)

For any PDL formula ϕ it can be decided if ϕ is satisfiable by
inspecting a finite number (those up to size 2|ϕ|) of models.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/61

Fischer-Ladner Filtration

s̃ := {s ′ | s ′ ≡ s}

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, t̃) | (s, t) ∈ R}

Ĩ (s̃) := I (s)

Lemma

|S̃ | ≤ 2|FL
mod (ϕ)| ≤ 2|ϕ|

Lemma (proved by structural induction)

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Theorem (small model property)

For any PDL formula ϕ it can be decided if ϕ is satisfiable by
inspecting a finite number (those up to size 2|ϕ|) of models.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/61

Fischer-Ladner Filtration

s̃ := {s ′ | s ′ ≡ s}

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, t̃) | (s, t) ∈ R}

Ĩ (s̃) := I (s)

Lemma

|S̃ | ≤ 2|FL
mod (ϕ)| ≤ 2|ϕ|

Lemma (proved by structural induction)

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Theorem (small model property)

For any PDL formula ϕ it can be decided if ϕ is satisfiable by
inspecting a finite number (those up to size 2|ϕ|) of models.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/61

Fischer-Ladner Filtration

s̃ := {s ′ | s ′ ≡ s}

S̃ := {s̃ | s ∈ S}

R̃ := {(s̃, t̃) | (s, t) ∈ R}

Ĩ (s̃) := I (s)

Lemma

|S̃ | ≤ 2|FL
mod (ϕ)| ≤ 2|ϕ|

Lemma (proved by structural induction)

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Theorem (small model property)

For any PDL formula ϕ it can be decided if ϕ is satisfiable by
inspecting a finite number (those up to size 2|ϕ|) of models.

Beckert, Ulbrich – Formale Systeme II: Theorie 35/61

Fischer-Ladner Closure for PDL

Operator

FL : FmlPDL → 2FmlPDL

FL(ϕ) smallest set satisfying

1 ϕ ∈ FL(ϕ)
2 (ψ1 → ψ2) ∈ FL(ϕ) ⇒ ψ1 ∈ FL(ϕ) and ψ2 ∈ FL(ϕ)
3 [π]ψ ∈ FL(ϕ) ⇒ ψ ∈ FL(ϕ)
4 [π1;π2]ψ ∈ FL(ϕ) ⇒ [π1][π2]ψ ∈ FL(ϕ)
5 [π1 ∪ π2]ψ ∈ FL(ϕ) ⇒ [π1]ψ ∈ FL(ϕ) and [π2]ψ ∈ FL(ϕ)
6 [π∗]ψ ∈ FL(ϕ) ⇒ [π][π∗]ψ ∈ FL(ϕ)
7 [?ψ1]ψ2 ∈ FL(ϕ) ⇒ ψ1 ∈ FL(ϕ)

Lemma (not obvious)

|FL(ϕ)| ≤ |ϕ|

Beckert, Ulbrich – Formale Systeme II: Theorie 36/61

Fischer-Ladner Filtration

Same construction as for modal logic

extended: ρ̃(a) := {(s̃, t̃) | (s, t) ∈ ρ(a)} for all a ∈ A

Lemma

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Prove by structural induction: lec. notes or [Harel et al., 6.4]

A. If ψ ∈ FL(ϕ) then s |= ψ iff s̃ |= ψ

B1. (s, t) ∈ ρ(π) implies (s̃, t̃) ∈ ρ̃(π) for [π]ψ ∈ FL(ϕ)

B2. If (s̃, t̃) ∈ ρ̃(π) and s |= [π]ψ, then t |= ψ for [π]ψ ∈ FL(ϕ)

Corollary

PDL has the small model property:
If ϕ ∈ FmlPDL is satisfiable, it has a model with at most 2|ϕ| states.

Beckert, Ulbrich – Formale Systeme II: Theorie 37/61

Fischer-Ladner Filtration

Same construction as for modal logic

extended: ρ̃(a) := {(s̃, t̃) | (s, t) ∈ ρ(a)} for all a ∈ A

Lemma

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Prove by structural induction: lec. notes or [Harel et al., 6.4]

A. If ψ ∈ FL(ϕ) then s |= ψ iff s̃ |= ψ

B1. (s, t) ∈ ρ(π) implies (s̃, t̃) ∈ ρ̃(π) for [π]ψ ∈ FL(ϕ)

B2. If (s̃, t̃) ∈ ρ̃(π) and s |= [π]ψ, then t |= ψ for [π]ψ ∈ FL(ϕ)

Corollary

PDL has the small model property:
If ϕ ∈ FmlPDL is satisfiable, it has a model with at most 2|ϕ| states.

Beckert, Ulbrich – Formale Systeme II: Theorie 37/61

Fischer-Ladner Filtration

Same construction as for modal logic

extended: ρ̃(a) := {(s̃, t̃) | (s, t) ∈ ρ(a)} for all a ∈ A

Lemma

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Prove by structural induction: lec. notes or [Harel et al., 6.4]

A. If ψ ∈ FL(ϕ) then s |= ψ iff s̃ |= ψ

B1. (s, t) ∈ ρ(π) implies (s̃, t̃) ∈ ρ̃(π) for [π]ψ ∈ FL(ϕ)

B2. If (s̃, t̃) ∈ ρ̃(π) and s |= [π]ψ, then t |= ψ for [π]ψ ∈ FL(ϕ)

Corollary

PDL has the small model property:
If ϕ ∈ FmlPDL is satisfiable, it has a model with at most 2|ϕ| states.

Beckert, Ulbrich – Formale Systeme II: Theorie 37/61

Fischer-Ladner Filtration

Same construction as for modal logic

extended: ρ̃(a) := {(s̃, t̃) | (s, t) ∈ ρ(a)} for all a ∈ A

Lemma

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Prove by structural induction: lec. notes or [Harel et al., 6.4]

A. If ψ ∈ FL(ϕ) then s |= ψ iff s̃ |= ψ

B1. (s, t) ∈ ρ(π) implies (s̃, t̃) ∈ ρ̃(π) for [π]ψ ∈ FL(ϕ)

B2. If (s̃, t̃) ∈ ρ̃(π) and s |= [π]ψ, then t |= ψ for [π]ψ ∈ FL(ϕ)

Corollary

PDL has the small model property:
If ϕ ∈ FmlPDL is satisfiable, it has a model with at most 2|ϕ| states.

Beckert, Ulbrich – Formale Systeme II: Theorie 37/61

Fischer-Ladner Filtration

Same construction as for modal logic

extended: ρ̃(a) := {(s̃, t̃) | (s, t) ∈ ρ(a)} for all a ∈ A

Lemma

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Prove by structural induction: lec. notes or [Harel et al., 6.4]

A. If ψ ∈ FL(ϕ) then s |= ψ iff s̃ |= ψ

B1. (s, t) ∈ ρ(π) implies (s̃, t̃) ∈ ρ̃(π) for [π]ψ ∈ FL(ϕ)

B2. If (s̃, t̃) ∈ ρ̃(π) and s |= [π]ψ, then t |= ψ for [π]ψ ∈ FL(ϕ)

Corollary

PDL has the small model property:
If ϕ ∈ FmlPDL is satisfiable, it has a model with at most 2|ϕ| states.

Beckert, Ulbrich – Formale Systeme II: Theorie 37/61

Fischer-Ladner Filtration

Same construction as for modal logic

extended: ρ̃(a) := {(s̃, t̃) | (s, t) ∈ ρ(a)} for all a ∈ A

Lemma

S ,R, I , s |= ϕ ⇐⇒ S̃ , R̃, Ĩ , s̃ |= ϕ

Prove by structural induction: lec. notes or [Harel et al., 6.4]

A. If ψ ∈ FL(ϕ) then s |= ψ iff s̃ |= ψ

B1. (s, t) ∈ ρ(π) implies (s̃, t̃) ∈ ρ̃(π) for [π]ψ ∈ FL(ϕ)

B2. If (s̃, t̃) ∈ ρ̃(π) and s |= [π]ψ, then t |= ψ for [π]ψ ∈ FL(ϕ)

Corollary

PDL has the small model property:
If ϕ ∈ FmlPDL is satisfiable, it has a model with at most 2|ϕ| states.

Beckert, Ulbrich – Formale Systeme II: Theorie 37/61

Complexity

Naive approach used for proof

FL(ϕ) ∈ O(|ϕ|)

|S̃ | ≤ 2FL(ϕ) ∈ O(2|ϕ|) many states in filtration

|models| ≤ (2Σ)|S| ∈ O(22|ϕ|
)

⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:
can be decided by a deterministic algorithm in O(2p(n)) for some
polynomial p.

 [Harel et al. Ch. 8]

Beckert, Ulbrich – Formale Systeme II: Theorie 38/61

Complexity

Naive approach used for proof

FL(ϕ) ∈ O(|ϕ|)
|S̃ | ≤ 2FL(ϕ) ∈ O(2|ϕ|) many states in filtration

|models| ≤ (2Σ)|S| ∈ O(22|ϕ|
)

⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:
can be decided by a deterministic algorithm in O(2p(n)) for some
polynomial p.

 [Harel et al. Ch. 8]

Beckert, Ulbrich – Formale Systeme II: Theorie 38/61

Complexity

Naive approach used for proof

FL(ϕ) ∈ O(|ϕ|)
|S̃ | ≤ 2FL(ϕ) ∈ O(2|ϕ|) many states in filtration

|models| ≤ (2Σ)|S| ∈ O(22|ϕ|
)

⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:
can be decided by a deterministic algorithm in O(2p(n)) for some
polynomial p.

 [Harel et al. Ch. 8]

Beckert, Ulbrich – Formale Systeme II: Theorie 38/61

Complexity

Naive approach used for proof

FL(ϕ) ∈ O(|ϕ|)
|S̃ | ≤ 2FL(ϕ) ∈ O(2|ϕ|) many states in filtration

|models| ≤ (2Σ)|S| ∈ O(22|ϕ|
)

⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:
can be decided by a deterministic algorithm in O(2p(n)) for some
polynomial p.

 [Harel et al. Ch. 8]

Beckert, Ulbrich – Formale Systeme II: Theorie 38/61

Complexity

Naive approach used for proof

FL(ϕ) ∈ O(|ϕ|)
|S̃ | ≤ 2FL(ϕ) ∈ O(2|ϕ|) many states in filtration

|models| ≤ (2Σ)|S| ∈ O(22|ϕ|
)

⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:

can be decided by a deterministic algorithm in O(2p(n)) for some
polynomial p.

 [Harel et al. Ch. 8]

Beckert, Ulbrich – Formale Systeme II: Theorie 38/61

Complexity

Naive approach used for proof

FL(ϕ) ∈ O(|ϕ|)
|S̃ | ≤ 2FL(ϕ) ∈ O(2|ϕ|) many states in filtration

|models| ≤ (2Σ)|S| ∈ O(22|ϕ|
)

⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:
can be decided by a deterministic algorithm in O(2p(n)) for some
polynomial p.

 [Harel et al. Ch. 8]

Beckert, Ulbrich – Formale Systeme II: Theorie 38/61

Deduction Theorem and
Compactness

Beckert, Ulbrich – Formale Systeme II: Theorie 39/61

Logical Consequence

M ⊆ FmlPDL, ϕ ∈ FmlPDL

Global Consequence

M |=G ϕ :⇐⇒
for all Kripke structures (S , ρ, I):

I , s |= M for all s ∈ S implies I , s |= ϕ for all s ∈ S

Local Consequence

M |=L ϕ :⇐⇒
for all Kripke structures (S , ρ, I):

for all s ∈ S : I , s |= M implies I , s |= ϕ

Local consequence is stronger: M |=L ϕ
=⇒
X⇐=

M |=G ϕ

Beckert, Ulbrich – Formale Systeme II: Theorie 40/61

Deduction Theorem

Recall : In propositional logic:

M ∪ {ϕ} |= ψ ⇐⇒ M |= ϕ→ ψ

Not valid for PDL:

p |=G [α]p but 6|=G p → [α]p

Problem:
Decidability has been shown only for |= ϕ.

Questions

1 Is ψ |=G ϕ decidable for PDL?

2 Is M |=G ϕ decidable for PDL?

Beckert, Ulbrich – Formale Systeme II: Theorie 41/61

Deduction Theorem

Recall : In propositional logic:

M ∪ {ϕ} |= ψ ⇐⇒ M |= ϕ→ ψ

Not valid for PDL:

p |=G [α]p but 6|=G p → [α]p

Problem:
Decidability has been shown only for |= ϕ.

Questions

1 Is ψ |=G ϕ decidable for PDL?

2 Is M |=G ϕ decidable for PDL?

Beckert, Ulbrich – Formale Systeme II: Theorie 41/61

Deduction Theorem

Recall : In propositional logic:

M ∪ {ϕ} |= ψ ⇐⇒ M |= ϕ→ ψ

Not valid for PDL:

p |=G [α]p but 6|=G p → [α]p

Problem:
Decidability has been shown only for |= ϕ.

Questions

1 Is ψ |=G ϕ decidable for PDL?

2 Is M |=G ϕ decidable for PDL?

Beckert, Ulbrich – Formale Systeme II: Theorie 41/61

Deduction Theorem

Recall : In propositional logic:

M ∪ {ϕ} |= ψ ⇐⇒ M |= ϕ→ ψ

Not valid for PDL:

p |=G [α]p but 6|=G p → [α]p

Problem:
Decidability has been shown only for |= ϕ.

Questions

1 Is ψ |=G ϕ decidable for PDL?

2 Is M |=G ϕ decidable for PDL?

Beckert, Ulbrich – Formale Systeme II: Theorie 41/61

Deduction Theorem

Recall : In propositional logic:

M ∪ {ϕ} |= ψ ⇐⇒ M |= ϕ→ ψ

Not valid for PDL:

p |=G [α]p but 6|=G p → [α]p

Problem:
Decidability has been shown only for |= ϕ.

Questions

1 Is ψ |=G ϕ decidable for PDL?

2 Is M |=G ϕ decidable for PDL?

Beckert, Ulbrich – Formale Systeme II: Theorie 41/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .

2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ

3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S

4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B

5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ

6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Deduction Theorem Revised

Lemma

ψ |=G ϕ ⇐⇒ |=
(
[(β1 ∪ . . . ∪ βk)∗]ψ

)
→ ϕ

with B := {β1, ..., βk} the atomic programs occurring in ψ,ϕ.

⇐= simple Exercise

=⇒ 1 Kripke structure (S , ρ, I), s ∈ S .
2 to show: ψ |=G ϕ =⇒ S , s |= [B∗]ψ → ϕ
3 S−(s) := {s ′ | s ′ reachable from s via B.} ⊆ S
4 S−(s), s |= α ⇐⇒ S , s |= α for all formulas α over B
5 S−(s) |= ψ ⇐⇒ S−(s), s |= [B∗]ψ
6 S−(s) |= ψ entails S−(s) |= ϕ by assumption

Decidable:

The consequence problem ψ |=G ϕ is decidable for PDL.

Beckert, Ulbrich – Formale Systeme II: Theorie 42/61

Compactness of PDL

Recall: Compactness Theorem

M |=G ϕ ⇐⇒ exists finite E ⊆ M with E |=G ϕ

Holds for:
Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

M := {p → [α ; . . . ; α︸ ︷︷ ︸
n times

]q | n ∈ N}, ϕ := p → [α∗]q

M |=G ϕ ? yes

E ⊂ M, E |=G ϕ ? no

PDL is not compact

because it has transitive closure “built in”.

Beckert, Ulbrich – Formale Systeme II: Theorie 43/61

Compactness of PDL

Recall: Compactness Theorem

M |=G ϕ ⇐⇒ exists finite E ⊆ M with E |=G ϕ

Holds for:
Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

M := {p → [α ; . . . ; α︸ ︷︷ ︸
n times

]q | n ∈ N}, ϕ := p → [α∗]q

M |=G ϕ ? yes

E ⊂ M, E |=G ϕ ? no

PDL is not compact

because it has transitive closure “built in”.

Beckert, Ulbrich – Formale Systeme II: Theorie 43/61

Compactness of PDL

Recall: Compactness Theorem

M |=G ϕ ⇐⇒ exists finite E ⊆ M with E |=G ϕ

Holds for:
Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

M := {p → [α ; . . . ; α︸ ︷︷ ︸
n times

]q | n ∈ N}, ϕ := p → [α∗]q

M |=G ϕ ? yes

E ⊂ M, E |=G ϕ ? no

PDL is not compact

because it has transitive closure “built in”.

Beckert, Ulbrich – Formale Systeme II: Theorie 43/61

Compactness of PDL

Recall: Compactness Theorem

M |=G ϕ ⇐⇒ exists finite E ⊆ M with E |=G ϕ

Holds for:
Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

M := {p → [α ; . . . ; α︸ ︷︷ ︸
n times

]q | n ∈ N}, ϕ := p → [α∗]q

M |=G ϕ ? yes

E ⊂ M, E |=G ϕ ? no

PDL is not compact

because it has transitive closure “built in”.

Beckert, Ulbrich – Formale Systeme II: Theorie 43/61

Compactness of PDL

Recall: Compactness Theorem

M |=G ϕ ⇐⇒ exists finite E ⊆ M with E |=G ϕ

Holds for:
Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

M := {p → [α ; . . . ; α︸ ︷︷ ︸
n times

]q | n ∈ N}, ϕ := p → [α∗]q

M |=G ϕ ? yes

E ⊂ M, E |=G ϕ ? no

PDL is not compact

because it has transitive closure “built in”.

Beckert, Ulbrich – Formale Systeme II: Theorie 43/61

Deducibility Problem in PDL

Quote:

[T]he problem of whether an arbitrary PDL formula p is
deducible from a single fixed axiom scheme is of extremely
high degree of undecidability, namely Π1

1-complete.

Meyer, Streett, Mirkowska:
The Deducibility Problem in Propositional Dynamic Logic, 1981

Beckert, Ulbrich – Formale Systeme II: Theorie 44/61

Variants and Conclusion

Beckert, Ulbrich – Formale Systeme II: Theorie 45/61

Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor ·−1:
π ∈ Π =⇒ π−1 ∈ Π
with ρ(π−1) = ρ(π)−1

Axiom schemes: for all ϕ ∈ FmlPDL, π ∈ Π

ϕ→ [π]〈π−1〉ϕ
ϕ→ [π−1]〈π〉ϕ

Complete

Adding the axioms to the known PDL calculus gives a correct and
complete calculus for PDL with Converse.

Beckert, Ulbrich – Formale Systeme II: Theorie 46/61

Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor ·−1:
π ∈ Π =⇒ π−1 ∈ Π
with ρ(π−1) = ρ(π)−1

Axiom schemes: for all ϕ ∈ FmlPDL, π ∈ Π

ϕ→ [π]〈π−1〉ϕ
ϕ→ [π−1]〈π〉ϕ

Complete

Adding the axioms to the known PDL calculus gives a correct and
complete calculus for PDL with Converse.

Beckert, Ulbrich – Formale Systeme II: Theorie 46/61

Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor ·−1:
π ∈ Π =⇒ π−1 ∈ Π
with ρ(π−1) = ρ(π)−1

Axiom schemes: for all ϕ ∈ FmlPDL, π ∈ Π

ϕ→ [π]〈π−1〉ϕ
ϕ→ [π−1]〈π〉ϕ

Complete

Adding the axioms to the known PDL calculus gives a correct and
complete calculus for PDL with Converse.

Beckert, Ulbrich – Formale Systeme II: Theorie 46/61

Variant: Context-free Programs

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

For example:
Produced context-free grammar X ::= αXγ | β
with L(X) = {αnβγn | n ∈ N}

Undecidability result

Validity is undecidable if instead of regular programs, context-free
programs are allowed.

Expressiveness

Without fixed semantics of N, recursion is strictly more expressive
than looping.

Beckert, Ulbrich – Formale Systeme II: Theorie 47/61

Variant: Context-free Programs

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

For example:
Produced context-free grammar X ::= αXγ | β
with L(X) = {αnβγn | n ∈ N}

Undecidability result

Validity is undecidable if instead of regular programs, context-free
programs are allowed.

Expressiveness

Without fixed semantics of N, recursion is strictly more expressive
than looping.

Beckert, Ulbrich – Formale Systeme II: Theorie 47/61

Variant: Context-free Programs

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

For example:
Produced context-free grammar X ::= αXγ | β
with L(X) = {αnβγn | n ∈ N}

Undecidability result

Validity is undecidable if instead of regular programs, context-free
programs are allowed.

Expressiveness

Without fixed semantics of N, recursion is strictly more expressive
than looping.

Beckert, Ulbrich – Formale Systeme II: Theorie 47/61

Variant: Context-free Programs

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

For example:
Produced context-free grammar X ::= αXγ | β
with L(X) = {αnβγn | n ∈ N}

Undecidability result

Validity is undecidable if instead of regular programs, context-free
programs are allowed.

Expressiveness

Without fixed semantics of N, recursion is strictly more expressive
than looping.

Beckert, Ulbrich – Formale Systeme II: Theorie 47/61

State Vector Semantics

A propositional Kripke structure K = (S , ρ, I) is determined by:

S the set of states
ρ : A→ S × S the accessibility relations for atomic programs
I : S → 2Σ evaluation of propositional atoms in states

e

Choose now: S ⊆ 2Σ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

Obviously decidable.

Evaluation of propositional variables fixes the state
(and the accessibility of successor states)

Beckert, Ulbrich – Formale Systeme II: Theorie 48/61

State Vector Semantics

A propositional Kripke structure K = (S , ρ, I) is determined by:

S the set of states
ρ : A→ S × S the accessibility relations for atomic programs
I : S → 2Σ evaluation of propositional atoms in states

e

Choose now: S ⊆ 2Σ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

Obviously decidable.

Evaluation of propositional variables fixes the state
(and the accessibility of successor states)

Beckert, Ulbrich – Formale Systeme II: Theorie 48/61

State Vector Semantics

A propositional Kripke structure K = (S , ρ, I) is determined by:

S the set of states
ρ : A→ S × S the accessibility relations for atomic programs
I : S → 2Σ evaluation of propositional atoms in states

e

Choose now: S ⊆ 2Σ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

Obviously decidable.

Evaluation of propositional variables fixes the state
(and the accessibility of successor states)

Beckert, Ulbrich – Formale Systeme II: Theorie 48/61

State Vector Semantics

A propositional Kripke structure K = (S , ρ, I) is determined by:

S the set of states
ρ : A→ S × S the accessibility relations for atomic programs
I : S → 2Σ evaluation of propositional atoms in states

e

Choose now: S ⊆ 2Σ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

Obviously decidable.

Evaluation of propositional variables fixes the state
(and the accessibility of successor states)

Beckert, Ulbrich – Formale Systeme II: Theorie 48/61

State Vector Semantics

A propositional Kripke structure K = (S , ρ, I) is determined by:

S the set of states
ρ : A→ S × S the accessibility relations for atomic programs
I : S → 2Σ evaluation of propositional atoms in states

e

Choose now: S ⊆ 2Σ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

Obviously decidable.

Evaluation of propositional variables fixes the state
(and the accessibility of successor states)

Beckert, Ulbrich – Formale Systeme II: Theorie 48/61

State Vector Semantics

A propositional Kripke structure K = (S , ρ, I) is determined by:

S the set of states
ρ : A→ S × S the accessibility relations for atomic programs
I : S → 2Σ evaluation of propositional atoms in states

e

Choose now: S ⊆ 2Σ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

Obviously decidable.

Evaluation of propositional variables fixes the state
(and the accessibility of successor states)

Beckert, Ulbrich – Formale Systeme II: Theorie 48/61

State Vector Semantics

A propositional Kripke structure K = (S , ρ, I) is determined by:

S the set of states
ρ : A→ S × S the accessibility relations for atomic programs
I : S → 2Σ evaluation of propositional atoms in states

e

Choose now: S ⊆ 2Σ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

Obviously decidable.

Evaluation of propositional variables fixes the state
(and the accessibility of successor states)

Beckert, Ulbrich – Formale Systeme II: Theorie 48/61

Lemma

Let

A = {a1, . . . , ak}

πall stands for the program (a1 ∪ . . . ∪ ak)∗.

U ⊆ Σ be a subset of the set of propositional atoms.

stateU abbreviate
∧

p∈U p ∧
∧

p 6∈U ¬p.

F an arbitrary PDL formula.

Then
〈πall〉(stateU ∧ F)→ [πall](stateU → F)

is true in all state vector Kripke structures.

Beckert, Ulbrich – Formale Systeme II: Theorie 49/61

Lemma

Let

A = {a1, . . . , ak}
πall stands for the program (a1 ∪ . . . ∪ ak)∗.

U ⊆ Σ be a subset of the set of propositional atoms.

stateU abbreviate
∧

p∈U p ∧
∧

p 6∈U ¬p.

F an arbitrary PDL formula.

Then
〈πall〉(stateU ∧ F)→ [πall](stateU → F)

is true in all state vector Kripke structures.

Beckert, Ulbrich – Formale Systeme II: Theorie 49/61

Lemma

Let

A = {a1, . . . , ak}
πall stands for the program (a1 ∪ . . . ∪ ak)∗.

U ⊆ Σ be a subset of the set of propositional atoms.

stateU abbreviate
∧

p∈U p ∧
∧

p 6∈U ¬p.

F an arbitrary PDL formula.

Then
〈πall〉(stateU ∧ F)→ [πall](stateU → F)

is true in all state vector Kripke structures.

Beckert, Ulbrich – Formale Systeme II: Theorie 49/61

Lemma

Let

A = {a1, . . . , ak}
πall stands for the program (a1 ∪ . . . ∪ ak)∗.

U ⊆ Σ be a subset of the set of propositional atoms.

stateU abbreviate
∧

p∈U p ∧
∧

p 6∈U ¬p.

F an arbitrary PDL formula.

Then
〈πall〉(stateU ∧ F)→ [πall](stateU → F)

is true in all state vector Kripke structures.

Beckert, Ulbrich – Formale Systeme II: Theorie 49/61

Lemma

Let

A = {a1, . . . , ak}
πall stands for the program (a1 ∪ . . . ∪ ak)∗.

U ⊆ Σ be a subset of the set of propositional atoms.

stateU abbreviate
∧

p∈U p ∧
∧

p 6∈U ¬p.

F an arbitrary PDL formula.

Then
〈πall〉(stateU ∧ F)→ [πall](stateU → F)

is true in all state vector Kripke structures.

Beckert, Ulbrich – Formale Systeme II: Theorie 49/61

Lemma

Let

A = {a1, . . . , ak}
πall stands for the program (a1 ∪ . . . ∪ ak)∗.

U ⊆ Σ be a subset of the set of propositional atoms.

stateU abbreviate
∧

p∈U p ∧
∧

p 6∈U ¬p.

F an arbitrary PDL formula.

Then
〈πall〉(stateU ∧ F)→ [πall](stateU → F)

is true in all state vector Kripke structures.

Beckert, Ulbrich – Formale Systeme II: Theorie 49/61

Lemma

Let

A = {a1, . . . , ak}
πall stands for the program (a1 ∪ . . . ∪ ak)∗.

U ⊆ Σ be a subset of the set of propositional atoms.

stateU abbreviate
∧

p∈U p ∧
∧

p 6∈U ¬p.

F an arbitrary PDL formula.

Then
〈πall〉(stateU ∧ F)→ [πall](stateU → F)

is true in all state vector Kripke structures.

Beckert, Ulbrich – Formale Systeme II: Theorie 49/61

Theorem

Let H be the set of all formulas

〈πall〉(stateU ∧ F)→ [πall](stateU → F)

with the notation from the previous slide.

Then:

1 {F} ∪ H is satisfiable iff F is state vector satisfiable.

2 H |= F iff |=sv F .

Beckert, Ulbrich – Formale Systeme II: Theorie 50/61

Theorem

Let H be the set of all formulas

〈πall〉(stateU ∧ F)→ [πall](stateU → F)

with the notation from the previous slide.

Then:

1 {F} ∪ H is satisfiable iff F is state vector satisfiable.

2 H |= F iff |=sv F .

Beckert, Ulbrich – Formale Systeme II: Theorie 50/61

Theorem

Let H be the set of all formulas

〈πall〉(stateU ∧ F)→ [πall](stateU → F)

with the notation from the previous slide.

Then:

1 {F} ∪ H is satisfiable iff F is state vector satisfiable.

2 H |= F iff |=sv F .

Beckert, Ulbrich – Formale Systeme II: Theorie 50/61

Propositional Dynamic Logic – Summary

extension of modal logic

abstract notion of actions / atomic logic statements

regular programs, with non-deterministic choice and
Kleene-interation

correct and complete calculus for tautologies

satisfiability is decidable (in EXPTIME)

logic is not compact

deducibility is utterly undecidable

deduction theorem can be rescued

Beckert, Ulbrich – Formale Systeme II: Theorie 51/61

Detection of dynamic execution errors in

IBM system automation’s rule-based expert system

An Application of PDL

Beckert, Ulbrich – Formale Systeme II: Theorie 52/61

Reference

[SinzEtAl02]

Carsten Sinz, Thomas Lumpp, Jürgen Schneider, and Wolfgang
Küchlin:
Detection of dynamic execution errors in IBM System
Automation’s rule-based expert system.
Information and Software Technology, 44(14):857–873, November
2002.

Beckert, Ulbrich – Formale Systeme II: Theorie 53/61

Context

Beckert, Ulbrich – Formale Systeme II: Theorie 54/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Context

IBM zSeries

z = zero downtime

high availability: 99.999%

< 5.3min/yr downtime

System Automation

full automation of a data center

starting, stopping, migration of applications

recovery from system failures

. . .

complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Beckert, Ulbrich – Formale Systeme II: Theorie 55/61

Example Rule

(taken from [SinzEtAl02])

Beckert, Ulbrich – Formale Systeme II: Theorie 56/61

Rules

when cond then var = d

AND, OR, NOT allowed in conditions

var E { d1, . . . , d2 } – “element of”

the then part can be executed if cond is true

Beckert, Ulbrich – Formale Systeme II: Theorie 57/61

Logical Encoding

One boolean atom per var/value-pair

Pvar ,d = true ⇐⇒ var = d

Encode that var has exactly one value (of d1, ..., dk)(∨
i=1..k

Pvar ,di

)
∧

 ∧
i,j=1..k

i<j

¬(Pvar ,di ∧ Pvar ,dj)


Atomic Actions: var = d αvar ,d

Axiom [αvar ,d]Pvar ,d

Beckert, Ulbrich – Formale Systeme II: Theorie 58/61

Logical Encoding

One boolean atom per var/value-pair

Pvar ,d = true ⇐⇒ var = d

Encode that var has exactly one value (of d1, ..., dk)(∨
i=1..k

Pvar ,di

)
∧

 ∧
i,j=1..k

i<j

¬(Pvar ,di ∧ Pvar ,dj)


Atomic Actions: var = d αvar ,d

Axiom [αvar ,d]Pvar ,d

Beckert, Ulbrich – Formale Systeme II: Theorie 58/61

Logical Encoding

One boolean atom per var/value-pair

Pvar ,d = true ⇐⇒ var = d

Encode that var has exactly one value (of d1, ..., dk)

(∨
i=1..k

Pvar ,di

)
∧

 ∧
i,j=1..k

i<j

¬(Pvar ,di ∧ Pvar ,dj)


Atomic Actions: var = d αvar ,d

Axiom [αvar ,d]Pvar ,d

Beckert, Ulbrich – Formale Systeme II: Theorie 58/61

Logical Encoding

One boolean atom per var/value-pair

Pvar ,d = true ⇐⇒ var = d

Encode that var has exactly one value (of d1, ..., dk)(∨
i=1..k

Pvar ,di

)
∧

 ∧
i,j=1..k

i<j

¬(Pvar ,di ∧ Pvar ,dj)



Atomic Actions: var = d αvar ,d

Axiom [αvar ,d]Pvar ,d

Beckert, Ulbrich – Formale Systeme II: Theorie 58/61

Logical Encoding

One boolean atom per var/value-pair

Pvar ,d = true ⇐⇒ var = d

Encode that var has exactly one value (of d1, ..., dk)(∨
i=1..k

Pvar ,di

)
∧

 ∧
i,j=1..k

i<j

¬(Pvar ,di ∧ Pvar ,dj)


Atomic Actions: var = d αvar ,d

Axiom [αvar ,d]Pvar ,d

Beckert, Ulbrich – Formale Systeme II: Theorie 58/61

Logical Encoding

One boolean atom per var/value-pair

Pvar ,d = true ⇐⇒ var = d

Encode that var has exactly one value (of d1, ..., dk)(∨
i=1..k

Pvar ,di

)
∧

 ∧
i,j=1..k

i<j

¬(Pvar ,di ∧ Pvar ,dj)


Atomic Actions: var = d αvar ,d

Axiom [αvar ,d]Pvar ,d

Beckert, Ulbrich – Formale Systeme II: Theorie 58/61

Logical Encoding

Semantics of a rule as program:

?when ; then

Semantics of all rules as program:

R :=
(
(?when1 ; then1) ∪ . . . ∪ (?whenr ; thenr)

)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 59/61

Logical Encoding

Semantics of a rule as program:

?when ; then

Semantics of all rules as program:

R :=
(
(?when1 ; then1) ∪ . . . ∪ (?whenr ; thenr)

)∗

Beckert, Ulbrich – Formale Systeme II: Theorie 59/61

Proof Obligations

Uniqueness of final state:
under assumption of a precondition PRE

PRE →
(
〈R〉p ↔ [R]p

)

Confluence:

PRE →
(
〈R〉[R]p → [R]〈R〉p

)
Absence of Oscillation:
modelled using an extension of PDL with non-termination operator

Beckert, Ulbrich – Formale Systeme II: Theorie 60/61

Proof Obligations

Uniqueness of final state:
under assumption of a precondition PRE

PRE →
(
〈R〉p ↔ [R]p

)

Confluence:

PRE →
(
〈R〉[R]p → [R]〈R〉p

)

Absence of Oscillation:
modelled using an extension of PDL with non-termination operator

Beckert, Ulbrich – Formale Systeme II: Theorie 60/61

Proof Obligations

Uniqueness of final state:
under assumption of a precondition PRE

PRE →
(
〈R〉p ↔ [R]p

)

Confluence:

PRE →
(
〈R〉[R]p → [R]〈R〉p

)
Absence of Oscillation:
modelled using an extension of PDL with non-termination operator

Beckert, Ulbrich – Formale Systeme II: Theorie 60/61

Verification Experiment

Verification Technique

state vector semantics

translation of PDL to boolean SAT

solving using SAT solver (Davies-Putnam)

Experiment:

∼40 rules

resulted in ∼1500 boolean variables

SAT solving < 1 sec

!! violations found – before deployment

Beckert, Ulbrich – Formale Systeme II: Theorie 61/61

