

Formale Systeme II: Theorie

Dynamic Logic: Propositional Dynamic Logic

SS 2022

Prof. Dr. Bernhard Beckert · Dr. Mattias Ulbrich Slides partially by Prof. Dr. Peter H. Schmitt

Requirements for this topic

- Fundamental knowledge of discreet structures (graphs, (equivalence) relations)
- General understanding of syntax and semantics of propositional and first order Logic
- General understanding of semantical concepts like satisfiability, decidability of logics

for instance from lecture "Formale Systeme I"

Dynamic Logic(s)

Overview - a family of logics

Modal Logics

↓
Propositional Dynamic Logic

↓
Dynamic Logic

↓
Hybrid DL Java DL

Modal Logics: → Formal Systems I (recap here)

Java DL: Logic used in KeY

→ lecture "Formal Systems II – Applications"

We get to know **Dynamic Logic** as ...

abstract reasoning framework for descriptions of actions

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?
 - relative completeness

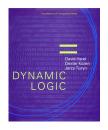
- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?
 - relative completeness
- concept of program verification on a while language

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?
 - relative completeness
- concept of program verification on a while language
- logic for verification engines for realworld programming languages

Literature

- Formale Systeme II Vorlesungsskript
 Peter H. Schmitt
 - \rightarrow Website

- Dynamic Logic
 Series: Foundations of Computing
 David Harel, Dexter Kozen and Jerzy Tiuryn
 MIT Press
 - → Department Library

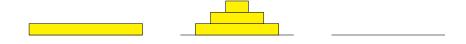


Still an Active Field ...

From the table of contents

- A Dynamic Logic for Learning Theory (Baltag et al.)
- Axiomatization and Computability of a Variant of Iteration-Free PDL with Fork (Balbiani et al.)
- Dynamic Preference Logic as a Logic of Belief Change (Souza et al.)
- Dynamic Logic: A Personal Perspective (Vaughan Pratt)
- ...

Motivating Example



Move alternatingly the smallest disk and another one.

- Move alternatingly the smallest disk and another one.
- ② If moving the smallest disk put it on the stack it did not come from in its previous move.

- Move alternatingly the smallest disk and another one.
- If moving the smallest disk put it on the stack it did not come from in its previous move.
- If not moving the smallest disk do the only legal move,

- Move alternatingly the smallest disk and another one.
- If moving the smallest disk put it on the stack it did not come from in its previous move.
- If not moving the smallest disk do the only legal move,

More formally:

sequence of actions

moveS; moveO; moveS; moveO; . . .

- Move alternatingly the smallest disk and another one.
- If moving the smallest disk put it on the stack it did not come from in its previous move.
- If not moving the smallest disk do the only legal move,

More formally:

sequence of actions

```
moveS; moveO; moveS; moveO;...
```

more concisely:

 $(moveS ; moveO)^*$

- Move alternatingly the smallest disk and another one.
- If moving the smallest disk put it on the stack it did not come from in its previous move.
- 3 If not moving the smallest disk do the only legal move,

More formally:

sequence of actions

```
moveS; moveO; moveS; moveO;...
```

more concisely:

 $(moveS; moveO)^*$

improved:

moveS ; testForStop ; (moveO ; moveS ; testForStop)*

Atomic statement: S1 true iff smallest piece on first stack

Atomic statement: S1 true iff smallest piece on first stack

Moving away

(1) $S1 \rightarrow \langle moveS \rangle \neg S1$

... after moving the smallest, it is no longer on the first stack

Atomic statement: S1 true iff smallest piece on first stack

Moving away

- (1) $S1 \rightarrow \langle moveS \rangle \neg S1$
- ... after moving the smallest, it is no longer on the first stack

Moving other

- (2) $S1 \rightarrow \langle moveO \rangle S1$
- ... after moving something else, it is still on the first stack

Atomic statement: S1 true iff smallest piece on first stack

Moving away

- (1) $S1 \rightarrow \langle moveS \rangle \neg S1$
- ... after moving the smallest, it is no longer on the first stack

Moving other

- $(2) S1 \rightarrow \langle moveO \rangle S1$
- ... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

- $S1
 ightarrow \langle moveO ; moveS
 angle
 eg S1$
- $S1 o \langle (moveO)^* ; moveS \rangle \neg S1$

Atomic statement: S1 true iff smallest piece on first stack

Moving away

- (1) $S1 \rightarrow \langle moveS \rangle \neg S1$
- ... after moving the smallest, it is no longer on the first stack

Moving other

- $(2) S1 \rightarrow \langle moveO \rangle S1$
- ... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

- $S1 o \langle moveO ; moveS \rangle \neg S1$
- $S1 \rightarrow \langle (moveO)^* ; moveS \rangle \neg S1$

THAT IS DYNAMIC LOGIC

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

• Signature Σ : set of propositional variables

Syntax/semantics of dynamic logic build on top of modal logic.

- lacksquare Signature Σ : set of propositional variables
- Fml_{Σ}^{mod} smallest set with:

Syntax/semantics of dynamic logic build on top of modal logic.

- lacksquare Signature Σ : set of propositional variables
- Fml_{Σ}^{mod} smallest set with:

Syntax/semantics of dynamic logic build on top of modal logic.

- Signature Σ : set of propositional variables
- Fml_{Σ}^{mod} smallest set with:
 - $\Sigma \subseteq Fml_{\Sigma}^{mod}$
 - true, false $\in Fml^{mod}_{\Sigma}$

Syntax/semantics of dynamic logic build on top of modal logic.

- Signature Σ : set of propositional variables
- Fml_{Σ}^{mod} smallest set with:
 - $\Sigma \subseteq Fml_{\Sigma}^{mod}$
 - true, false $\in Fml_{\Sigma}^{mod}$
 - $\bullet \ A, B \in Fml_{\Sigma}^{mod} \stackrel{-}{\Longrightarrow} \ A \land B, A \lor B, A \to B, \neg A \in Fml_{\Sigma}^{mod}$

Syntax/semantics of dynamic logic build on top of modal logic.

- Signature Σ : set of propositional variables
- Fml_{Σ}^{mod} smallest set with:
 - $\Sigma \subseteq Fml_{\Sigma}^{mod}$
 - true, false $\in Fml_{\Sigma}^{mod}$
 - $A, B \in Fml_{\Sigma}^{mod} \implies A \land B, A \lor B, A \to B, \neg A \in Fml_{\Sigma}^{mod}$
 - $A \in Fml_{\Sigma}^{mod} \implies \Box A, \Diamond A \in Fml_{\Sigma}^{mod}$

Syntax/semantics of dynamic logic build on top of modal logic.

- Signature Σ : set of propositional variables
- Fml_{Σ}^{mod} smallest set with:
 - $\Sigma \subseteq Fml_{\Sigma}^{mod}$
 - true, false $\in Fml_{\Sigma}^{mod}$
 - $A, B \in Fml_{\Sigma}^{mod} \implies A \land B, A \lor B, A \to B, \neg A \in Fml_{\Sigma}^{mod}$
 - $A \in Fml_{\Sigma}^{mod} \implies \Box A, \Diamond A \in Fml_{\Sigma}^{mod}$
- pronounced "Box" and "Diamond"

Kripke Semantics

Modal logic formulas are interpreted in a system of multiple possible **worlds** and an **accessibility relation** between them.

Kripke Semantics

Modal logic formulas are interpreted in a system of multiple possible worlds and an accessibility relation between them.

Kripke Frame (S, R):

- Set S of worlds (or states)
- Relation $R \subseteq S \times S$, the accessibility relation

Kripke Semantics

Modal logic formulas are interpreted in a system of multiple possible worlds and an accessibility relation between them.

Kripke Frame (S, R):

- Set S of worlds (or states)
- Relation $R \subseteq S \times S$, the *accessibility relation*

Kripke Structure (S, R, I):

- Given a signature Σ
- Kripke Frame (S, R)
- Interpretation $I: S \to 2^{\Sigma}$

$$\begin{array}{l} \textit{I}, \textit{s} \models \varphi \iff \text{Formula } \varphi \text{ holds in state } \textit{s} \in \textit{S} \\ \textit{I} \models \varphi \iff \text{Formula } \varphi \text{ holds in all states } \textit{s} \in \textit{S} \end{array}$$

$$I, s \models p \iff p \in I(s)$$
 for $p \in \Sigma$

For a signature Σ and Kripke structure (S, R, I)

$$\begin{array}{l} \textit{I}, \textit{s} \models \varphi \iff \text{Formula } \varphi \text{ holds in state } \textit{s} \in \textit{S} \\ \textit{I} \models \varphi \iff \text{Formula } \varphi \text{ holds in all states } \textit{s} \in \textit{S} \end{array}$$

$$I, s \models p \iff p \in I(s)$$
 for $p \in \Sigma$

 \models is *as expected* for $\land, \lor, \rightarrow, \lnot$.

This means:
$$I, s \models \varphi \land \psi \iff I, s \models \varphi \text{ and } I, s \models \psi$$

$$I, s \models \varphi \lor \psi \iff I, s \models \varphi \text{ or } I, s \models \psi$$

$$I, s \models \varphi \rightarrow \psi \iff I, s \models \varphi \text{ implies } I, s \models \psi$$

$$I, s \models \neg \varphi \iff \text{not } I, s \models \varphi$$

$$\begin{array}{l} \textit{I}, \textit{s} \models \varphi \iff \text{Formula } \varphi \text{ holds in state } \textit{s} \in \textit{S} \\ \textit{I} \models \varphi \iff \text{Formula } \varphi \text{ holds in all states } \textit{s} \in \textit{S} \end{array}$$

$$I, s \models p \iff p \in I(s)$$
 for $p \in \Sigma$

$$\models$$
 is as expected for $\land, \lor, \rightarrow, \lnot$.

$$\begin{array}{l} \textit{I}, \textit{s} \models \varphi \iff \text{Formula } \varphi \text{ holds in state } \textit{s} \in \textit{S} \\ \textit{I} \models \varphi \iff \text{Formula } \varphi \text{ holds in all states } \textit{s} \in \textit{S} \end{array}$$

$$I, s \models p \iff p \in I(s)$$
 for $p \in \Sigma$

$$\models$$
 is as expected for $\land, \lor, \rightarrow, \lnot$.

$$I, s \models \Box \varphi \iff I, s' \models \varphi \text{ for all } s' \in S \text{ with } (s, s') \in R$$

$$\begin{array}{l} \textit{I}, \textit{s} \models \varphi \iff \text{Formula } \varphi \text{ holds in state } \textit{s} \in \textit{S} \\ \textit{I} \models \varphi \iff \text{Formula } \varphi \text{ holds in all states } \textit{s} \in \textit{S} \end{array}$$

$$I, s \models p \iff p \in I(s)$$
 for $p \in \Sigma$

$$\models$$
 is as expected for $\land, \lor, \rightarrow, \lnot$.

$$I, s \models \Box \varphi \iff I, s' \models \varphi \text{ for all } s' \in S \text{ with } (s, s') \in R$$

 $I, s \models \Diamond \varphi \iff I, s' \models \varphi \text{ for some } s' \in S \text{ with } (s, s') \in R$

$$\begin{array}{l} \textit{I}, \textit{s} \models \varphi \iff \text{Formula } \varphi \text{ holds in state } \textit{s} \in \textit{S} \\ \textit{I} \models \varphi \iff \text{Formula } \varphi \text{ holds in all states } \textit{s} \in \textit{S} \end{array}$$

$$I, s \models p \iff p \in I(s)$$
 for $p \in \Sigma$

$$\models$$
 is as expected for $\land, \lor, \rightarrow, \lnot$.

$$I, s \models \Box \varphi \iff I, s' \models \varphi \text{ for all } s' \in S \text{ with } (s, s') \in R$$

 $I, s \models \Diamond \varphi \iff I, s' \models \varphi \text{ for some } s' \in S \text{ with } (s, s') \in R$

Applications of modal logics

Logics of *necessity* and *possibility* – philosophy.

Applications of modal logics

Logics of necessity and possibility - philosophy.

Meaning of Modalities:

Modal

 $\Box A$ It is necessary that \dots

 $\Diamond A$ It is possible that . . .

Applications of modal logics

Logics of necessity and possibility - philosophy.

Meaning of Modalities:

Modal

- $\Box A$ It is necessary that . . .
- $\Diamond A$ It is possible that . . .

Deontic (from Greek for duty)

- $\Box A$ It is obligatory that . . .
- $\Diamond A$ It is permitted that . . .

Applications of modal logics

Logics of necessity and possibility - philosophy.

Meaning of Modalities:

Modal $\Box A$ It is necessary that . . . $\Diamond A$ It is possible that . . . **Deontic** (from Greek for duty) $\Box A$ It is obligatory that . . . $\Diamond A$ It is permitted that ... **Epistemic** (logic of knowledge) I know that ... I consider it possible that . . .

Applications of modal logics

Logics of necessity and possibility - philosophy.

Meaning of Modalities:

Modal $\Box A$ It is necessary that . . . $\Diamond A$ It is possible that . . . **Deontic** (from Greek for duty) $\Box A$ It is obligatory that . . . $\Diamond A$ It is permitted that ... **Epistemic** (logic of knowledge) I know that ... I consider it possible that . . .

"Dynamic": systematically changing evaluation context (by programs)

- "Dynamic": systematically changing evaluation context (by programs)
- "Programs" are composite actions

- "Dynamic": systematically changing evaluation context (by programs)
- "Programs" are composite actions
- State change descriptions are explicit part of the logical language.

There are two interdependent "sublanguages":

- "Dynamic": systematically changing evaluation context (by programs)
- "Programs" are composite actions
- State change descriptions are explicit part of the logical language.

There are two interdependent "sublanguages":

Formulas

- "Dynamic": systematically changing evaluation context (by programs)
- "Programs" are composite actions
- State change descriptions are explicit part of the logical language.

There are two interdependent "sublanguages":

- Formulas
- Programs

- "Dynamic": systematically changing evaluation context (by programs)
- "Programs" are composite actions
- State change descriptions are explicit part of the logical language.

There are two interdependent "sublanguages":

- Formulas
- 2 Programs
- Extends modal logic

More than one modality

Multi-modal logic

Have different Box operators with different accessibility relations:

$$\square_{\alpha}, \square_{\beta}, \square_{\gamma}, \dots$$

 $(\rightarrow$ basic actions ins "Towers of Hanoi")

More than one modality

Multi-modal logic

Have different Box operators with different accessibility relations:

$$\square_{\alpha}, \square_{\beta}, \square_{\gamma}, \dots$$

 $(\rightarrow$ basic actions ins "Towers of Hanoi")

Propositional Dynamic Logic (PDL):

- Signature Σ of propositional variables
- Set $A = \{\alpha, \beta, \ldots\}$ of atomic actions/programs
- We write $[\alpha]$ instead of \square_{α}

Compose Programs

Atomic programs can be into composed into larger programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

 $\bullet A\subseteq \Pi_{\Sigma,A}$

atomic programs

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

he set of programs $\Pi_{\Sigma,\mathcal{A}}$ is the smallest set such that \bullet $A \subseteq \Pi_{\Sigma,A}$ atomic programs

sequential composition

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

atomic programs

sequential composition

nondeterministic choice

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

atomic programs

sequential composition

nondeterministic choice

indeterminate iteration

tests

Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

tests

Regular Programs =

Regular Expressions over atomic programs and tests

For a given signature Σ and atomic programs A, the set of formulae $Fml^{PDL}_{\Sigma,A}$ is the smallest set such that

① $true, false \in Fml_{\Sigma,A}^{PDL}$

For a given signature Σ and atomic programs A, the set of formulae $Fml^{PDL}_{\Sigma,A}$ is the smallest set such that

- $\textbf{1} \quad \textit{true}, \textit{false} \in \textit{Fml}^{\textit{PDL}}_{\Sigma, \textit{A}}$

For a given signature Σ and atomic programs A, the set of formulae $Fml_{\Sigma,A}^{PDL}$ is the smallest set such that

- $\textbf{1} \quad \textit{true}, \textit{false} \in \textit{Fml}^{\textit{PDL}}_{\Sigma, \textit{A}}$

For a given signature Σ and atomic programs A, the set of formulae $Fml_{\Sigma,A}^{PDL}$ is the smallest set such that

- $\textbf{1} \quad \textit{true}, \textit{false} \in \textit{Fml}_{\Sigma,A}^{\textit{PDL}}$

For a given signature Σ and atomic programs A, the set of formulae $Fml_{\Sigma,A}^{PDL}$ is the smallest set such that

- $\textbf{1} \quad \textit{true}, \textit{false} \in \textit{Fml}^{\textit{PDL}}_{\Sigma, A}$

Programs and Formulae are mutually dependent definitions and must be seen simultaneously.

PDL Formulas - Examples

\rightarrow Towers of Hanoi

$$A = \{moveS, moveO\}, \quad \Sigma = \{S1\} \ S1 \rightarrow \langle (moveO)^* ; moveS \rangle \neg S1$$

PDL Formulas - Examples

\rightarrow Towers of Hanoi

$$A = \{moveS, moveO\}, \quad \Sigma = \{S1\} \ S1
ightarrow \langle (moveO)^* ; moveS
angle \neg S1$$

multi-level and nested modalities

$$A = \{\alpha, \beta\}, \qquad \Sigma = \{P, Q\}$$

$$[\alpha \cup (?P; \beta)^*]Q$$

$$[\alpha]P \to [\alpha^*]P$$

$$[\alpha]\langle\beta\rangle(P \to [\alpha^*]Q)$$

$$[\alpha; ?\langle\beta\rangle P; \beta]Q$$

Given a signature Σ and atomic programs A

(multi-modal propositional) Kripke frame (S, ρ)

- set of states S
- function $\rho:A\to 2^{S\times S}$ accessibility relations for atomic programs

Given a signature Σ and atomic programs A

(multi-modal propositional) Kripke frame (S, ρ)

- set of states S
- function $\rho:A\to 2^{S\times S}$ accessibility relations for atomic programs

Kripke structure (S, ρ, I)

- Kripke frame (S, ρ)
- interpretation $I: S \to 2^{\Sigma}$
- ⇒ same as for modal logic

PDL – Program Semantics

Extension of ρ

from $\rho: A \to 2^{S^2}$ to $\rho: \Pi_{\Sigma,A} \to 2^{S^2}$

PDL – Program Semantics

Extension of ρ

from $\rho:A\to 2^{S^2}$ to $\rho:\Pi_{\Sigma,A}\to 2^{S^2}$

$$\rho(\alpha)$$
 base case for $\alpha \in A$

$$\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$$

PDL - Program Semantics

Extension of ρ

from $\rho: A \to 2^{S^2}$ to $\rho: \Pi_{\Sigma,A} \to 2^{S^2}$

$$\begin{array}{ll} \rho(\alpha) & \text{base case for } \alpha \in A \\ \\ \rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\ \\ \rho(\pi_1 \, ; \, \pi_2) &= \rho(\pi_1) \, ; \, \rho(\pi_2) \\ &= \{(s,s') \mid \text{ex. } t \text{ with } (s,t) \in \rho(\pi_1) \text{ and } (t,s') \in \rho(\pi_2)\} \end{array}$$

PDL - Program Semantics

Extension of ρ

from $\rho: A \to 2^{S^2}$ to $\rho: \Pi_{\Sigma, A} \to 2^{S^2}$

$$\begin{array}{ll} \rho(\alpha) & \text{base case for } \alpha \in A \\ \\ \rho(\pi_1 \cup \pi_2) &= \rho(\pi_1) \cup \rho(\pi_2) \\ \\ \rho(\pi_1 \, ; \, \pi_2) &= \rho(\pi_1) \, ; \, \rho(\pi_2) \\ &= \{(s,s') \mid \text{ex. } t \text{ with } (s,t) \in \rho(\pi_1) \text{ and } (t,s') \in \rho(\pi_2)\} \\ \\ \rho(\pi^*) &= \operatorname{rtcl}(\rho(\pi)) = \bigcup_{n=0}^{\infty} \rho(\pi)^n \quad \textit{refl. transitive closure} \\ &= \{(s_0,s_n) \mid \text{ex. } n \text{ with } (s_i,s_{i+1}) \in \rho(\pi) \text{ for } 0 \leq i < n\} \end{array}$$

PDL - Program Semantics

Extension of ρ

from $\rho: A \to 2^{S^2}$ to $\rho: \Pi_{\Sigma,A} \to 2^{S^2}$

$$\rho(\alpha) \qquad \text{base case for } \alpha \in A$$

$$\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$$

$$\rho(\pi_1 ; \pi_2) = \rho(\pi_1) ; \rho(\pi_2)$$

$$= \{(s, s') \mid \text{ex. } t \text{ with } (s, t) \in \rho(\pi_1) \text{ and } (t, s') \in \rho(\pi_2)\}$$

$$\rho(\pi^*) \qquad = \text{rtcl}(\rho(\pi)) = \bigcup_{n=0}^{\infty} \rho(\pi)^n \qquad \textit{refl. transitive closure}$$

$$= \{(s_0, s_n) \mid \text{ex. } n \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ for } 0 \leq i < n\}$$

$$\rho(\mathbf{?F}) \qquad = \{(s, s) \mid I, s \models F\}$$

$$I, s \models p \iff p \in I(s) \quad \text{for } p \in \Sigma$$

$$I,s \models p \iff p \in I(s) \quad \text{for } p \in \Sigma$$
 \models is as expected for $\land, \lor, \rightarrow, \lnot$.

For a signature Σ , basic programs A and Kripke structure (S, ρ, I)

$$l,s \models p \iff p \in l(s) \quad \text{for } p \in \Sigma$$

 \models is as expected for $\land, \lor, \rightarrow, \lnot$.

$$I, s \models [\pi] \varphi \iff I, s' \models \varphi \text{ for all } s' \in S \text{ with } (s, s') \in \rho(\pi)$$

$$I, s \models p \iff p \in I(s) \quad \text{for } p \in \Sigma$$
 $\models \text{ is as expected for } \land, \lor, \rightarrow, \lnot.$

$$I, s \models [\pi] \varphi \iff I, s' \models \varphi \text{ for all } s' \in S \text{ with } (s, s') \in \rho(\pi)$$

$$I, s \models \langle \pi \rangle \varphi \iff I, s' \models \varphi \text{ for some } s' \in S \text{ with } (s, s') \in \rho(\pi)$$

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

Dual operators

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $\bullet \ [\pi_1 \ ; \pi_2] \varphi \ \leftrightarrow \ [\pi_1] [\pi_2] \varphi$

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $\bullet \ [\pi_1 \ ; \pi_2] \varphi \ \leftrightarrow \ [\pi_1] [\pi_2] \varphi$
- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $\bullet [\pi_1; \pi_2] \varphi \leftrightarrow [\pi_1] [\pi_2] \varphi$
- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $\bullet [\pi_1; \pi_2] \varphi \leftrightarrow [\pi_1] [\pi_2] \varphi$
- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$

Tautologies

Dual operators

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $\bullet \ [\pi_1 \ ; \pi_2] \varphi \ \leftrightarrow \ [\pi_1] [\pi_2] \varphi$
- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$
- $\bullet \ [\pi^*]\varphi \ \leftrightarrow \ \varphi \wedge [\pi \ ; \pi^*]\varphi$

- $(?\psi)\varphi \leftrightarrow \psi \wedge \varphi$

Tautologies

Dual operators

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $\bullet [\pi_1; \pi_2] \varphi \leftrightarrow [\pi_1] [\pi_2] \varphi$
- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$

- $(?\psi)\varphi \leftrightarrow \psi \wedge \varphi$

Tautologies

Dual operators

$$[\pi]\varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi$$

- $\bullet [\pi_1; \pi_2] \varphi \leftrightarrow [\pi_1] [\pi_2] \varphi$
- $[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi$

- $(?\psi)\varphi \leftrightarrow \psi \land \varphi$
- all tautologies for modal logic K

A Calculus for Propositional Dynamic Logic

Axioms

All propositional tautologies

Rules

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \tag{MP}$$

$$\frac{\varphi}{[\pi]_{(2)}}$$

Theorem

The presented calculus is sound and complete.

Theorem

The presented calculus is sound and complete.

Theorem

The presented calculus is sound and complete.

Proof

See e.g.,pp. 559-560 in David Harel's article *Dynamic Logic* in the *Handbook of Philosophical Logic*, *Volume II*, published by D.Reidel in 1984.

Theorem

The presented calculus is sound and complete.

Proof

See e.g.,pp. 559-560 in David Harel's article *Dynamic Logic* in the *Handbook of Philosophical Logic*, *Volume II*, published by D.Reidel in 1984.

or

D. Harel, D. Kozen and J. Tiuryn Dynamic Logic in Handbook of Philosophical Logic, 2nd edition, volume 4 by Kluwer Academic Publisher, 2001.

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

skip := ?true

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

```
skip := ?true
```

fail := ?false

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

```
\begin{array}{rcl} \mathsf{skip} &:= & \textit{?true} \\ \\ & \mathsf{fail} &:= & \textit{?false} \end{array} if \varphi then \alpha else \beta := \left( \mathbf{?} \varphi \, ; \alpha \right) \cup \left( \mathbf{?} \neg \varphi \, ; \beta \right)
```


Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

```
\begin{array}{rcl} \mathsf{skip} &:= & \textit{?true} \\ \\ & \mathsf{fail} &:= & \textit{?false} \end{array} \mathsf{if} \ \varphi \ \mathsf{then} \ \alpha \ \mathsf{else} \ \beta \ := \ \left( \mathbf{?}\varphi \, ; \, \alpha \right) \cup \left( \mathbf{?} \neg \varphi \, ; \, \beta \right) \\ \\ \mathsf{while} \ \varphi \ \mathsf{do} \ \alpha \ := \ \left( \mathbf{?}\varphi \, ; \, \alpha \right)^* \, ; \, \mathbf{?} \neg \varphi \end{array}
```


 $[\mathrm{skip}]\varphi \quad \leftrightarrow \quad \varphi$

$$\begin{aligned} & [\mathsf{skip}] \varphi & & \leftrightarrow & \varphi \\ & \langle \mathsf{skip} \rangle \varphi & & \leftrightarrow & \varphi \end{aligned}$$

$$\begin{split} [\mathsf{skip}] \varphi & & \leftrightarrow & \varphi \\ \langle \mathsf{skip} \rangle \varphi & & \leftrightarrow & \varphi \\ [\mathsf{fail}] \varphi & & \leftrightarrow & \mathit{true} \end{split}$$

$$\begin{split} [\mathsf{skip}] \varphi & \leftrightarrow & \varphi \\ \langle \mathsf{skip} \rangle \varphi & \leftrightarrow & \varphi \\ [\mathsf{fail}] \varphi & \leftrightarrow & \mathit{true} \\ \langle \mathsf{fail} \rangle \varphi & \leftrightarrow & \mathit{false} \end{split}$$

$$\begin{split} [\mathsf{skip}] \varphi & \leftrightarrow & \varphi \\ & \langle \mathsf{skip} \rangle \varphi & \leftrightarrow & \varphi \\ & [\mathsf{fail}] \varphi & \leftrightarrow & \mathit{true} \\ & \langle \mathsf{fail} \rangle \varphi & \leftrightarrow & \mathit{false} \end{split}$$

$$[\mathsf{if} \ \varphi \ \mathsf{then} \ \alpha \ \mathsf{else} \ \beta] \psi & \leftrightarrow & (\varphi \to [\alpha] \psi) \land (\neg \varphi \to [\beta] \psi) \end{split}$$

$$\begin{split} [\mathsf{skip}] \varphi & \leftrightarrow & \varphi \\ & \langle \mathsf{skip} \rangle \varphi & \leftrightarrow & \varphi \\ & [\mathsf{fail}] \varphi & \leftrightarrow & \mathsf{true} \\ & \langle \mathsf{fail} \rangle \varphi & \leftrightarrow & \mathsf{false} \\ [\mathsf{if} \ \varphi \ \mathsf{then} \ \alpha \ \mathsf{else} \ \beta] \psi & \leftrightarrow & (\varphi \to [\alpha] \psi) \wedge (\neg \varphi \to [\beta] \psi) \\ & \langle \mathsf{if} \ \varphi \ \mathsf{then} \ \alpha \ \mathsf{else} \ \beta \rangle \psi & \leftrightarrow & (\varphi \to \langle \alpha \rangle \psi) \wedge (\neg \varphi \to \langle \beta \rangle \psi) \end{split}$$

$$\begin{split} [\mathsf{skip}] \varphi & \leftrightarrow & \varphi \\ & \langle \mathsf{skip} \rangle \varphi & \leftrightarrow & \varphi \\ & [\mathsf{fail}] \varphi & \leftrightarrow & \mathsf{true} \\ & \langle \mathsf{fail} \rangle \varphi & \leftrightarrow & \mathsf{false} \\ [\mathsf{if} \ \varphi \ \mathsf{then} \ \alpha \ \mathsf{else} \ \beta] \psi & \leftrightarrow & (\varphi \to [\alpha] \psi) \wedge (\neg \varphi \to [\beta] \psi) \\ & \langle \mathsf{if} \ \varphi \ \mathsf{then} \ \alpha \ \mathsf{else} \ \beta \rangle \psi & \leftrightarrow & (\varphi \to \langle \alpha \rangle \psi) \wedge (\neg \varphi \to \langle \beta \rangle \psi) \end{split}$$

Is PDL decidable?

Is there an algorithm that terminates on every input and computes whether a PDL-formula $\phi \in Fml_{\Sigma,A}^{PDL}$ is satisfiable.

Is PDL decidable?

Is there an algorithm that terminates on every input and computes whether a PDL-formula $\phi \in \mathit{Fml}^{PDL}_{\Sigma,A}$ is satisfiable.

$$\iff$$

Is there an algorithm that terminates on every input and computes whether a PDL-formula $\phi \in Fml^{PDL}_{\Sigma,A}$ is valid.

Is PDL decidable?

Is there an algorithm that terminates on every input and computes whether a PDL-formula $\phi \in \mathit{Fml}^{PDL}_{\Sigma,\mathcal{A}}$ is satisfiable.

$$\iff$$

Is there an algorithm that terminates on every input and computes whether a PDL-formula $\phi \in Fml_{\Sigma,A}^{PDL}$ is valid.

Answer:

YES, PDL is decidable!

Fischer and Ladner (1979)

General Idea:

 $\varphi \in \mathit{Fml}^\mathit{PDL}$ has a model $\iff \varphi$ has a model of bounded size.

For every Kripke structure, a bounded Kripke structure can be defined which is indistinguishable for φ .

Fischer and Ladner (1979)

General Idea:

 $\varphi \in \mathit{Fml}^\mathit{PDL}$ has a model $\iff \varphi$ has a model of bounded size.

For every Kripke structure, a bounded Kripke structure can be defined which is indistinguishable for φ .

Preliminary lemma: Decidability for modal logic

The proof idea is the same, yet simpler.

Reduced syntax

Only connectors \rightarrow , *false*, \square are allowed \Rightarrow simplifies proofs.

Reduced syntax

Only connectors \rightarrow , *false*, \square are allowed \Rightarrow simplifies proofs.

Operator

 $\mathit{FL}^{mod}:\mathit{Fml}^{mod} o 2^{\mathit{Fml}^{mod}}$ assigns to φ the set of subformulas of φ .

Reduced syntax

Only connectors \rightarrow , *false*, \square are allowed \Rightarrow simplifies proofs.

Operator

 $\mathit{FL}^{mod}:\mathit{Fml}^{mod} o 2^{\mathit{Fml}^{mod}}$ assigns to φ the set of subformulas of φ .

$$FL^{mod}(\varphi \to \psi) = \{\varphi \to \psi\} \cup FL^{mod}(\varphi) \cup FL^{mod}(\psi)$$

$$FL^{mod}(false) = \{false\}$$

$$FL^{mod}(p) = \{p\} \qquad p \in \Sigma$$

$$FL^{mod}(\Box \varphi) = \{\Box \varphi\} \cup FL^{mod}(\varphi)$$

Reduced syntax

Only connectors \rightarrow , *false*, \square are allowed \Rightarrow simplifies proofs.

Operator

$$\mathit{FL}^{mod}:\mathit{Fml}^{mod} o 2^{\mathit{Fml}^{mod}}$$
 assigns to φ the set of subformulas of $\varphi.$

$$FL^{mod}(\varphi \to \psi) = \{\varphi \to \psi\} \cup FL^{mod}(\varphi) \cup FL^{mod}(\psi)$$

$$FL^{mod}(false) = \{false\}$$

$$FL^{mod}(p) = \{p\} \qquad p \in \Sigma$$

$$FL^{mod}(\Box \varphi) = \{\Box \varphi\} \cup FL^{mod}(\varphi)$$

Observation

$$|FL^{mod}(\varphi)| \le |\varphi|$$

Filtration

For a Kripke structure S, R, I define a bounded structure $\widetilde{S}, \widetilde{R}, \widetilde{I}$ with $S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$

Filtration

For a Kripke structure S, R, I define a bounded structure $\widetilde{S}, \widetilde{R}, \widetilde{I}$ with $S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$

Central Idea

States are **undistinguishable** for φ if they are equal on $FL^{mod}(\varphi)$.

Filtration

For a Kripke structure S, R, I define a bounded structure $\widetilde{S}, \widetilde{R}, \widetilde{I}$ with $S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$

Central Idea

States are **undistinguishable** for φ if they are equal on $FL^{mod}(\varphi)$.

$$s \equiv t \iff (I, s \models \psi \Leftrightarrow I, t \models \psi \text{ for all } \psi \in \mathit{FL}^{mod}(\varphi))$$

Filtration

For a Kripke structure S, R, I define a bounded structure $\widetilde{S}, \widetilde{R}, \widetilde{I}$ with $S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$

Central Idea

States are **undistinguishable** for φ if they are equal on $FL^{mod}(\varphi)$.

$$s \equiv t \iff (I, s \models \psi \Leftrightarrow I, t \models \psi \text{ for all } \psi \in FL^{mod}(\varphi))$$

$$\widetilde{s} := \{s' \mid s' \equiv s\} \qquad \dots \text{ equivalence classes}$$

$$\widetilde{S} := \{\widetilde{s} \mid s \in S\}$$

$$\widetilde{R} := \{(\widetilde{s}, \widetilde{s'}) \mid (s, s') \in R\}$$

$$\widetilde{I}(\widetilde{s}) := I(s)$$

Fischer-Ladner Filtration

$$\widetilde{s} := \{s' \mid s' \equiv s\}$$

$$\widetilde{S} := \{\widetilde{s} \mid s \in S\}$$

$$\widetilde{R} := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in R\}$$

$$\widetilde{I}(\widetilde{s}) := I(s)$$

Fischer-Ladner Filtration

$$\widetilde{s} := \{s' \mid s' \equiv s\}$$

$$\widetilde{S} := \{\widetilde{s} \mid s \in S\}$$

$$\widetilde{R} := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in R\}$$

$$\widetilde{I}(\widetilde{s}) := I(s)$$

Lemma

$$|\widetilde{S}| \leq 2^{|FL^{mod}(\varphi)|} \leq 2^{|\varphi|}$$

$$\widetilde{s} := \{ s' \mid s' \equiv s \}$$

$$\widetilde{S} := \{ \widetilde{s} \mid s \in S \}$$

$$\widetilde{R} := \{ (\widetilde{s}, \widetilde{t}) \mid (s, t) \in R \}$$

$$\widetilde{I}(\widetilde{s}) := I(s)$$

Lemma

$$|\widetilde{S}| \leq 2^{|FL^{mod}(\varphi)|} \leq 2^{|\varphi|}$$

Lemma (proved by structural induction)

$$S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$$

$$\widetilde{s} := \{s' \mid s' \equiv s\}$$

$$\widetilde{S} := \{\widetilde{s} \mid s \in S\}$$

$$\widetilde{R} := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in R\}$$

$$\widetilde{I}(\widetilde{s}) := I(s)$$

Lemma

$$|\widetilde{S}| \leq 2^{|FL^{mod}(\varphi)|} \leq 2^{|\varphi|}$$

Lemma (proved by structural induction)

$$S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$$

Theorem (small model property)

For any PDL formula φ it can be decided if φ is satisfiable by inspecting a finite number (those up to size $2^{|\varphi|}$) of models.

Fischer-Ladner Closure for PDL

Operator

$$FL: Fml^{PDL} \rightarrow 2^{Fml^{PDL}}$$

$FL(\varphi)$ smallest set satisfying

Lemma (not obvious)

$$|FL(\varphi)| \leq |\varphi|$$

Same construction as for modal logic

$$\widetilde{\rho}(a) := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in \rho(a)\}$$

for all
$$a \in A$$

Same construction as for modal logic

extended:

$$\widetilde{
ho}(a) := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in \rho(a)\}$$

for all $a \in A$

Lemma

$$S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$$

Same construction as for modal logic

extended:

$$\widetilde{
ho}(a) := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in \rho(a)\}$$

for all $a \in A$

Lemma

$$S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$$

Prove by structural induction: \rightsquigarrow lec. notes or [Harel et al., 6.4]

A. If
$$\psi \in FL(\varphi)$$
 then $s \models \psi$ iff $\widetilde{s} \models \psi$

Same construction as for modal logic

$$\widetilde{\rho}(a) := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in \rho(a)\}$$

for all $a \in A$

Lemma

$$S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$$

Prove by structural induction:
→ lec. notes or [Harel et al., 6.4]

$$ightarrow$$
 lec. notes or [Harel et al., 6.4]

A. If
$$\psi \in FL(\varphi)$$
 then $s \models \psi$ iff $\widetilde{s} \models \psi$

B1.
$$(s,t) \in \rho(\pi)$$
 implies $(\tilde{s},\tilde{t}) \in \widetilde{\rho}(\pi)$ for $[\pi]\psi \in FL(\varphi)$

Same construction as for modal logic

extended:

$$\widetilde{
ho}(a) := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in \rho(a)\}$$

for all $a \in A$

Lemma

$$S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$$

Prove by structural induction: \rightsquigarrow lec. notes or [Harel et al., 6.4]

A. If $\psi \in FL(\varphi)$ then $s \models \psi$ iff $\widetilde{s} \models \psi$

B1. $(s,t) \in \rho(\pi)$ implies $(\widetilde{s},\widetilde{t}) \in \widetilde{\rho}(\pi)$ for $[\pi]\psi \in FL(\varphi)$

B2. If $(\widetilde{s},\widetilde{t}) \in \widetilde{\rho}(\pi)$ and $s \models [\pi]\psi$, then $t \models \psi$ for $[\pi]\psi \in FL(\varphi)$

Same construction as for modal logic

$$\widetilde{
ho}(a) := \{(\widetilde{s}, \widetilde{t}) \mid (s, t) \in \rho(a)\}$$

for all $a \in A$

Lemma

$$S, R, I, s \models \varphi \iff \widetilde{S}, \widetilde{R}, \widetilde{I}, \widetilde{s} \models \varphi$$

Prove by structural induction: \rightsquigarrow lec. notes or [Harel et al., 6.4]

A. If
$$\psi \in FL(\varphi)$$
 then $s \models \psi$ iff $\widetilde{s} \models \psi$

B1.
$$(s,t) \in \rho(\pi)$$
 implies $(\widetilde{s},\widetilde{t}) \in \widetilde{\rho}(\pi)$ for $[\pi]\psi \in FL(\varphi)$

B2. If
$$(\widetilde{s},\widetilde{t}) \in \widetilde{\rho}(\pi)$$
 and $s \models [\pi]\psi$, then $t \models \psi$ for $[\pi]\psi \in FL(\varphi)$

Corollary

PDL has the small model property:

If $\varphi \in Fml^{PDL}$ is satisfiable, it has a model with at most $2^{|\varphi|}$ states.

Naive approach used for proof

• $FL(\varphi) \in O(|\varphi|)$

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- ullet $|\widetilde{S}| \leq 2^{\mathit{FL}(arphi)} \in \mathit{O}(2^{|arphi|})$ many states in filtration

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- ullet $|\widetilde{S}| \leq 2^{\mathit{FL}(arphi)} \in \mathit{O}(2^{|arphi|})$ many states in filtration
- lacksquare $|\mathsf{models}| \leq (2^{\Sigma})^{|S|} \in \mathit{O}(2^{2^{|arphi|}})$

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- $|\widetilde{S}| \leq 2^{FL(arphi)} \in O(2^{|arphi|})$ many states in filtration
- lacksquare $|\mathsf{models}| \leq (2^{\Sigma})^{|\mathcal{S}|} \in \mathit{O}(2^{2^{|arphi|}})$
- ⇒ double exponential complexity

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- $|\widetilde{S}| \leq 2^{\mathit{FL}(arphi)} \in \mathit{O}(2^{|arphi|})$ many states in filtration
- lacksquare $|\mathsf{models}| \leq (2^{\Sigma})^{|S|} \in O(2^{2^{|arphi|}})$
- ⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- $ullet |\widetilde{S}| \leq 2^{ extit{FL}(arphi)} \in O(2^{|arphi|})$ many states in filtration
- lacksquare $|\mathsf{models}| \leq (2^{\Sigma})^{|S|} \in O(2^{2^{|arphi|}})$
- ⇒ double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME: can be decided by a deterministic algorithm in $O(2^{p(n)})$ for some polynomial p.

 \rightsquigarrow [Harel et al. Ch. 8]

Deduction Theorem and Compactness

Logical Consequence

$$M \subseteq Fml^{PDL}$$
, $\varphi \in Fml^{PDL}$

Global Consequence

$$M \models^{\mathsf{G}} \varphi : \iff$$

for all Kripke structures (S, ρ, I) :

 $I, s \models M \text{ for all } s \in S \quad \text{implies} \quad I, s \models \varphi \text{ for all } s \in S$

Local Consequence

 $M \models^{L} \varphi : \iff$

for all Kripke structures (S, ρ, I) :

for all $s \in S$: $I, s \models M$ implies $I, s \models \varphi$

Local consequence is stronger: $M \models^{L} \varphi \stackrel{\Longrightarrow}{\iff} M \models^{G} \varphi$

Recall: In propositional logic:

$$M \cup \{\varphi\} \models \psi \iff M \models \varphi \rightarrow \psi$$

Recall: In propositional logic:

$$M \cup \{\varphi\} \models \psi \iff M \models \varphi \rightarrow \psi$$

Not valid for PDL:

$$p \models^{\mathsf{G}} [\alpha] p$$
 but $\not\models^{\mathsf{G}} p \to [\alpha] p$

Recall: In propositional logic:

$$M \cup \{\varphi\} \models \psi \iff M \models \varphi \rightarrow \psi$$

Not valid for PDL:

$$p \models^{\mathsf{G}} [\alpha] p$$
 but $\not\models^{\mathsf{G}} p \to [\alpha] p$

Problem:

Decidability has been shown only for $\models \varphi$.

Recall: In propositional logic:

$$M \cup \{\varphi\} \models \psi \iff M \models \varphi \rightarrow \psi$$

Not valid for PDL:

$$p \models^{\mathsf{G}} [\alpha] p$$
 but $\not\models^{\mathsf{G}} p \to [\alpha] p$

Problem:

Decidability has been shown only for $\models \varphi$.

Questions

Recall: In propositional logic:

$$M \cup \{\varphi\} \models \psi \iff M \models \varphi \rightarrow \psi$$

Not valid for PDL:

$$p \models^{\mathsf{G}} [\alpha] p$$
 but $\not\models^{\mathsf{G}} p \to [\alpha] p$

Problem:

Decidability has been shown only for $\models \varphi$.

Questions

- **1** Is $\psi \models^{\mathsf{G}} \varphi$ decidable for PDL?
- ② Is $M \models^{G} \varphi$ decidable for PDL?

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

with $B:=\{\beta_1,...,\beta_k\}$ the atomic programs occurring in ψ,φ .

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

with $B:=\{\beta_1,...,\beta_k\}$ the atomic programs occurring in ψ,φ .

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

- \implies **1** Kripke structure (S, ρ, I) , $s \in S$.

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

- \implies **1** Kripke structure (S, ρ, I) , $s \in S$.
 - $② \ \, \text{to show:} \,\, \psi \models^{\textit{G}} \varphi \implies \textit{S}, s \models [\textit{B}^*] \psi \rightarrow \varphi$

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

- \implies **1** Kripke structure (S, ρ, I) , $s \in S$.
 - $\textbf{②} \ \, \text{to show:} \ \, \psi \models^{\textit{G}} \varphi \implies \textit{S}, \textit{s} \models [\textit{B}^*] \psi \rightarrow \varphi$

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

- \implies **1** Kripke structure (S, ρ, I) , $s \in S$.
 - **2** to show: $\psi \models^{\mathsf{G}} \varphi \implies \mathsf{S}, \mathsf{s} \models [\mathsf{B}^*]\psi \rightarrow \varphi$

 - **4** $S^-(s), s \models \alpha \iff S, s \models \alpha \text{ for all formulas } \alpha \text{ over } B$

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

- \implies **1** Kripke structure (S, ρ, I) , $s \in S$.
 - 2 to show: $\psi \models^{\mathsf{G}} \varphi \implies \mathsf{S}, \mathsf{s} \models [\mathsf{B}^*]\psi \rightarrow \varphi$

 - **4** $S^-(s), s \models \alpha \iff S, s \models \alpha \text{ for all formulas } \alpha \text{ over } B$

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

- \implies **1** Kripke structure (S, ρ, I) , $s \in S$.
 - 2 to show: $\psi \models^{\mathsf{G}} \varphi \implies \mathsf{S}, \mathsf{s} \models [\mathsf{B}^*] \psi \to \varphi$

 - **4** $S^-(s), s \models \alpha \iff S, s \models \alpha \text{ for all formulas } \alpha \text{ over } B$

 - **6** $S^-(s) \models \psi$ entails $S^-(s) \models \varphi$ by assumption

Lemma

$$\psi \models^{\mathsf{G}} \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \to \varphi$$

with $B := \{\beta_1, ..., \beta_k\}$ the atomic programs occurring in ψ, φ .

- \implies **1** Kripke structure (S, ρ, I) , $s \in S$.
 - 2 to show: $\psi \models^{G} \varphi \implies S, s \models [B^*]\psi \rightarrow \varphi$

 - $S^{-}(s), s \models \alpha \iff S, s \models \alpha \text{ for all formulas } \alpha \text{ over } B$

 - **6** $S^-(s) \models \psi$ entails $S^-(s) \models \varphi$ by assumption

Decidable:

The consequence problem $\psi \models^{\mathsf{G}} \varphi$ is decidable for PDL.

Recall: Compactness Theorem

$$M \models^{\mathsf{G}} \varphi \iff \mathsf{exists} \mathsf{ finite } E \subseteq M \mathsf{ with } E \models^{\mathsf{G}} \varphi$$

Holds for:

Propositional Logic, First Order Logic, not for higher order logic

Recall: Compactness Theorem

$$M \models^{G} \varphi \iff \text{ exists finite } E \subseteq M \text{ with } E \models^{G} \varphi$$

Holds for:

Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

$$M := \{ p \to [\underline{\alpha; \ldots; \alpha}] q \mid n \in \mathbb{N} \}, \qquad \varphi := p \to [\alpha^*] q$$

Recall: Compactness Theorem

$$M \models^{G} \varphi \iff \text{ exists finite } E \subseteq M \text{ with } E \models^{G} \varphi$$

Holds for:

Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

$$M := \{ p \to [\underline{\alpha; \ldots; \alpha}] q \mid n \in \mathbb{N} \}, \qquad \varphi := p \to [\alpha^*] q$$

•
$$M \models^{\mathsf{G}} \varphi$$
 ? yes

Recall: Compactness Theorem

$$M \models^{G} \varphi \iff \text{ exists finite } E \subseteq M \text{ with } E \models^{G} \varphi$$

Holds for:

Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

$$M := \{ p \to [\underline{\alpha; \ldots; \alpha}] q \mid n \in \mathbb{N} \}, \qquad \varphi := p \to [\alpha^*] q$$

- $M \models^{\mathsf{G}} \varphi$? yes
- $E \subset M$, $E \models^G \varphi$? no

Compactness of PDL

Recall: Compactness Theorem

$$M \models^{\mathsf{G}} \varphi \iff \mathsf{exists} \mathsf{ finite } E \subseteq M \mathsf{ with } E \models^{\mathsf{G}} \varphi$$

Holds for:

Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

$$M := \{ p \to [\underline{\alpha; \ldots; \alpha}] q \mid n \in \mathbb{N} \}, \qquad \varphi := p \to [\alpha^*] q$$

- $M \models^{\mathsf{G}} \varphi$? yes
- $E \subset M$, $E \models^{G} \varphi$? no

PDL is not compact

because it has transitive closure "built in".

Deducibility Problem in PDL

Quote:

[T]he problem of whether an arbitrary PDL formula p is deducible from a single fixed axiom scheme is of extremely high degree of undecidability, namely Π_1^1 -complete.

Meyer, Streett, Mirkowska:

The Deducibility Problem in Propositional Dynamic Logic, 1981

Variants and Conclusion

Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor \cdot^{-1} :

$$\pi \in \Pi \implies \pi^{-1} \in \Pi$$

with
$$\rho(\pi^{-1}) = \rho(\pi)^{-1}$$

Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor $\cdot^{-1}\colon$

$$\pi \in \Pi \implies \pi^{-1} \in \Pi$$

with $\rho(\pi^{-1}) = \rho(\pi)^{-1}$

Axiom schemes: for all $\varphi \in Fml^{PDL}$, $\pi \in \Pi$

Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor \cdot^{-1} :

$$\pi \in \Pi \implies \pi^{-1} \in \Pi$$

with $\rho(\pi^{-1}) = \rho(\pi)^{-1}$

Axiom schemes: for all $\varphi \in Fml^{PDL}$, $\pi \in \Pi$

Complete

Adding the axioms to the known PDL calculus gives a correct and complete calculus for PDL with Converse.

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

For example:

Produced context-free grammar $X := \alpha X \gamma \mid \beta$ with $L(X) = \{\alpha^n \beta \gamma^n \mid n \in \mathbb{N}\}$

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

For example:

Produced context-free grammar $X ::= \alpha X \gamma \mid \beta$ with $L(X) = \{\alpha^n \beta \gamma^n \mid n \in \mathbb{N}\}$

Undecidability result

Validity is undecidable if instead of regular programs, context-free programs are allowed.

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

For example:

Produced context-free grammar $X ::= \alpha X \gamma \mid \beta$ with $L(X) = \{\alpha^n \beta \gamma^n \mid n \in \mathbb{N}\}$

Undecidability result

Validity is undecidable if instead of regular programs, context-free programs are allowed.

Expressiveness

Without fixed semantics of \mathbb{N} , recursion is strictly more expressive than looping.

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

S the set of states

 $\rho:A\to S\times S$ the accessibility relations for atomic programs e $I:S\to 2^\Sigma$ evaluation of propositional atoms in states

Beckert, Ulbrich - Formale Systeme II: Theorie

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

S

the set of states

 $\rho: A \to S \times S$ $I: S \to 2^{\Sigma}$

the accessibility relations for atomic programs *e* evaluation of propositional atoms in states

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

S the set of states

 $\rho:A \to S \times S$ the accessibility relations for atomic programs e $I:S \to 2^{\Sigma}$ evaluation of propositional atoms in states

Choose now: $S \subseteq 2^{\Sigma}$ the set of states

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

S the set of states

 $\rho:A o S imes S$ the accessibility relations for atomic programs e $I:S o 2^\Sigma$ evaluation of propositional atoms in states

Choose now: $S \subseteq 2^{\Sigma}$ the set of states

We call this the state vector semantics.

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

5 the set of states

 $\rho:A o S imes S$ the accessibility relations for atomic programs e $I:S o 2^\Sigma$ evaluation of propositional atoms in states

Choose now: $S \subseteq 2^{\Sigma}$ the set of states

We call this the state vector semantics.

Strictly larger set of tautologies.

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

S the set of states

 $\rho:A o S imes S$ the accessibility relations for atomic programs e $I:S o 2^\Sigma$ evaluation of propositional atoms in states

Choose now: $S \subseteq 2^{\Sigma}$ the set of states

We call this the state vector semantics.

- Strictly larger set of tautologies.
- Obviously decidable.

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

the set of states

$$\rho:A o S imes S$$
 the accessibility relations for atomic programs e $I:S o 2^\Sigma$ evaluation of propositional atoms in states

Choose now:

$$S\subseteq 2^{\Sigma}$$

the set of states

We call this the state vector semantics.

- Strictly larger set of tautologies.
- Obviously decidable.
- Evaluation of propositional variables fixes the state (and the accessibility of successor states)

$$A = \{a_1, \ldots, a_k\}$$

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.
- $U \subseteq \Sigma$ be a subset of the set of propositional atoms.

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.
- $U \subseteq \Sigma$ be a subset of the set of propositional atoms.
- $state_U$ abbreviate $\bigwedge_{p \in U} p \land \bigwedge_{p \notin U} \neg p$.

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.
- $U \subseteq \Sigma$ be a subset of the set of propositional atoms.
- state_U abbreviate $\bigwedge_{p \in U} p \land \bigwedge_{p \notin U} \neg p$.
- F an arbitrary PDL formula.

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.
- $U \subseteq \Sigma$ be a subset of the set of propositional atoms.
- state_U abbreviate $\bigwedge_{p \in U} p \land \bigwedge_{p \notin U} \neg p$.
- F an arbitrary PDL formula.

Let

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.
- $U \subseteq \Sigma$ be a subset of the set of propositional atoms.
- state_U abbreviate $\bigwedge_{p \in U} p \land \bigwedge_{p \notin U} \neg p$.
- F an arbitrary PDL formula.

Then

$$\langle \pi_{\mathit{all}} \rangle (\mathit{state}_U \wedge F) o [\pi_{\mathit{all}}] (\mathit{state}_U o F)$$

is true in all state vector Kripke structures.

Theorem

Let H be the set of all formulas

$$\langle \pi_{\mathit{all}} \rangle (\mathit{state}_U \wedge F) o [\pi_{\mathit{all}}] (\mathit{state}_U o F)$$

with the notation from the previous slide.

Theorem

Let H be the set of all formulas

$$\langle \pi_{\mathit{all}} \rangle (\mathit{state}_U \wedge F) o [\pi_{\mathit{all}}] (\mathit{state}_U o F)$$

with the notation from the previous slide.

Then:

① $\{F\} \cup H$ is satisfiable iff F is state vector satisfiable.

Theorem

Let H be the set of all formulas

$$\langle \pi_{\mathit{all}} \rangle (\mathit{state}_U \wedge F) o [\pi_{\mathit{all}}] (\mathit{state}_U o F)$$

with the notation from the previous slide.

Then:

- **1** $\{F\} \cup H$ is satisfiable iff F is state vector satisfiable.

Propositional Dynamic Logic – Summary

- extension of modal logic
- abstract notion of actions / atomic logic statements
- regular programs, with non-deterministic choice and Kleene-interation
- correct and complete calculus for tautologies
- satisfiability is decidable (in EXPTIME)
- logic is not compact
- deducibility is utterly undecidable
- deduction theorem can be rescued

Detection of dynamic execution errors in IBM system automation's rule-based expert system

An Application of PDL

Reference

[SinzEtAl02]

Carsten Sinz, Thomas Lumpp, Jürgen Schneider, and Wolfgang Küchlin:

Detection of dynamic execution errors in IBM System Automation's rule-based expert system.

Information and Software Technology, 44(14):857–873, November 2002.

IBM zSeries

IBM zSeries

z = zero downtime

IBM zSeries

- **z** = zero downtime
- high availability: 99.999%

IBM zSeries

- **z** = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

System Automation

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

System Automation

• full automation of a data center

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

- full automation of a data center
- starting, stopping, migration of applications

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

- full automation of a data center
- starting, stopping, migration of applications
- recovery from system failures

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

- full automation of a data center
- starting, stopping, migration of applications
- recovery from system failures
- . . .

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

- full automation of a data center
- starting, stopping, migration of applications
- recovery from system failures
-
- complex, rule-based configuration

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime

System Automation

- full automation of a data center
- starting, stopping, migration of applications
- recovery from system failures
-
- complex, rule-based configuration

Example

Flight booking center: 100s of users, many parallel apps

Example Rule


```
correlation set/status/compound/satisfactory :
when
         status/compound NOT E {Satisfactory}
    AND status/startable E {Yes}
    AND ( ( status/observed E {Available, WasAvailable}
             AND status/desired E {Available}
             AND status/automation E {Idle, Internal}
             AND correlation/external/stop/failed E {false}
           OR
             status/observed E {SoftDown, StandBy}
             AND status/desired E {Unavailable}
             AND status/automation E {Idle, Internal}
    SetVariable status/compound = Satisfactory
     RecordVariableHistory status/compound
```

Fig. 4. Example of a correlation rule.

```
(taken from [SinzEtAl02])
```

Rules

when cond then var = d

- AND, OR, NOT allowed in conditions
- $var \ \mathbf{E} \ \{ \ d_1, \ \dots, \ d_2 \ \}$ "element of"
- the **then** part can be executed if **cond** is true

One boolean atom per var/value-pair

- One boolean atom per var/value-pair
- $P_{var,d} = true \iff var = d$

- One boolean atom per var/value-pair
- $P_{var,d} = true \iff var = d$
- Encode that var has exactly one value (of $d_1, ..., d_k$)

- One boolean atom per var/value-pair
- $P_{var.d} = true \iff var = d$
- Encode that var has exactly one value (of $d_1, ..., d_k$)

- One boolean atom per var/value-pair
- $P_{var,d} = true \iff var = d$
- Encode that var has exactly one value (of $d_1, ..., d_k$)

■ Atomic Actions: $var = d \leadsto \alpha_{var,d}$

- One boolean atom per var/value-pair
- $P_{var.d} = true \iff var = d$
- Encode that var has exactly one value (of $d_1, ..., d_k$)

$$\bullet \left(\bigvee_{i=1..k} P_{var,d_i}\right) \land \left(\bigwedge_{\substack{i,j=1..k\\i < j}} \neg (P_{var,d_i} \land P_{var,d_j})\right)$$

- Atomic Actions: $var = d \leadsto \alpha_{var,d}$
- Axiom $[\alpha_{var,d}]P_{var,d}$

Semantics of a rule as program:

?when; then

Semantics of a rule as program:

?when; then

Semantics of all rules as program:

$$R := ((?when_1; then_1) \cup \ldots \cup (?when_r; then_r))^*$$

Proof Obligations

Uniqueness of final state:

under assumption of a precondition PRE

$$PRE \rightarrow (\langle R \rangle p \leftrightarrow [R]p)$$

Proof Obligations

Uniqueness of final state:

under assumption of a precondition PRE

$$PRE \rightarrow (\langle R \rangle p \leftrightarrow [R]p)$$

Confluence:

$$PRE \rightarrow (\langle R \rangle [R] p \rightarrow [R] \langle R \rangle p)$$

Proof Obligations

Uniqueness of final state:

under assumption of a precondition PRE

$$PRE \rightarrow (\langle R \rangle p \leftrightarrow [R]p)$$

Confluence:

$$PRE \rightarrow (\langle R \rangle [R] p \rightarrow [R] \langle R \rangle p)$$

Absence of Oscillation:

modelled using an extension of PDL with non-termination operator

Verification Experiment

Verification Technique

- state vector semantics
- translation of PDL to boolean SAT
- solving using SAT solver (Davies-Putnam)

Experiment:

- \sim 40 rules
- $lue{}$ resulted in ~ 1500 boolean variables
- SAT solving < 1 sec</p>
- !! violations found before deployment