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Abstraction and Refinement –
Introduction
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Late fault recovery is expensive

[“Extra Time Saves Money”, W. Knuffel, Computer Language, 1990]

Goal: Detect
faults here!
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Reasons for system faults

Systems are inherently complex

Unconsidered situations, corner cases

Ambiguous natural language requirements

Component interplay

. . .
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Abstraction

The only tool to master complexity is
abstraction.

CLIFF JONES
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Abstraction and Refinement

Abstraction
Abstract

Concrete

Refinement
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Abstraction

Abstraction
reduce system complexity
without removing important properties
make the model susceptible to formal analysis

and the inverse

Refinement
enrich abstract model with details
introduce a new particular aspect
iterative process: add complexity in a stepwise fashion
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Abstraction in Engineering

Abstraction is an important tool in engineering

Established means of abstraction
Mechanical engineering: BLUEPRINTS

Electrical engineering: DATASHEETS

CIRCUIT DIAGRAMS

Architecture: FLOOR PLANS

. . .

Abstract descriptions remove unnecessary details,
concentrate on one aspect
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Datasheet – Abstraction
Extracts from datasheet for an IC with four NAND gates

Aspect Behaviour

refined to

Aspect Geometry

refined to
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Schematic Diagram vs. PCB Layout

Aspect
“Behaviour”
preserved
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Beck diagrams (1931)

Aspect
“Route planning”
is preserved
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Property preservation

Abstraction with focus on particular aspect
System properties w.r.t. that aspect must also hold in the
abstraction.

Refinement with focus on particular aspect
Properties of abstract model w.r.t. that aspect must be inherited
by the refined model.

That’s what we will formally prove
in the next sections.

Examples:
Abstraction: “The shortest tube travel from Liverpool St. to
Westminster has 8 stops and 2 changes.”
Refinement: Abstract : Input “a = 1” gives output “b = 1”
Concrete: High voltage on pin A gives high voltage on pin B
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“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction

reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique

reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.
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Event-B –
Introduction
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Event-B

EventB is a formalism for modelling and reasoning about
discrete systems.

for their structure (how can their state be described) and
for their behaviour (how can the evolution of their state be
described)

Models are formulated using set theory

Event-based evolution of the original B Method

Tool-support:
RODIN – deductive verification, theorem prover: proofs
Pro-B – model checking, animator: counterexamples
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Central Concepts

Variables and Events
Variables model the current state within the state space.
Events describe operations to model the system behaviour

Invariants
properties to be maintained by system
formal proof obligations to show that

Refinement
Behaviour of refining model is compatible with abstract
model
formal proof obligation to show that
Hence, invariants of abstract model are inherited by
concrete model
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Contexts and Machines

Event-B models
systems state evolution over time, triggered by events

Event-B models consist of contexts and machines:

Contexts
Static, rigid, constant parts that do not change over time.

Machines
Dynamic, volatile, evolving parts that do change over time.
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Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)
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Introduction by Example

Students and Exams – Requirements
R1 Every student must take a final exam in a subject of their

choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

Ü Identify the context, the state and the events according to
the requirements R1–R3.
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Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT
maths 6= physics // constants could have same value
siblings ⊆ STUDENT × STUDENT // function type
∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .
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Exam Machine

MACHINE ExamAbstract

SEES ExamCtxt

VARIABLES
passed failed

INVARIANTS
passed ⊆ STUDENT failed ⊆ STUDENT
passed ∩ failed = ∅ //R3

EVENTS
INITIALISATION =̂ . . .
ATTEMPTEXAM =̂ . . . //R2
PASSEXAM =̂ . . . //R3
FAILEXAM =̂ . . . //R3
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Exam Machine (2)

MACHINE ExamAbstract
VARIABLES passed failed . . .

EVENTS
INITIALISATION =̂

failed := ∅
passed := ∅

PASSEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade > 4
THEN failed := failed ∪ {s}
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Invariant violated

MACHINE ExamAbstract
VARIABLES passed failed
INVARIANTS passed ∩ failed = ∅ . . .

EVENTS
PASSEXAM =̂

ANY s grade
WHERE s ∈ STUDENT ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade > 4
THEN failed := failed ∪ {s}
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Invariant violated

MACHINE ExamAbstract
VARIABLES passed failed
INVARIANTS passed ∩ failed = ∅ . . .

EVENTS
PASSEXAM =̂

ANY s grade
WHERE s ∈ STUDENT \ (failed ∪ passed) ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT \ (failed ∪ passed) ∧ grade > 4
THEN failed := failed ∪ {s}
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Underspecified model

EVENTS
PASSEXAM =̂

ANY s grade WHERE grade ≤ 4 ∧ s ∈ . . .
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade WHERE grade > 4 ∧ s ∈ . . .
THEN failed := failed ∪ {s}

ATTEMPTEXAM =̂
ANY s grade WHERE grade ∈ N ∧ s ∈ . . .
THEN skip

Additional requirement
R4 Any student may attempt the exam three times and

ultimately fails if the fourth attempt is unsuccessful.
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Refinement Exams (1)

MACHINE RefinedExams REFINES ExamsAbstract

VARIABLES passed attempts
INVARIANTS

attempts ∈ STUDENT → N // typing for attempts
failed = {s · attempts(s) = 4} // coupling invariant

EVENTS
INITIALISATION =̂ REFINES INITIALISATION

passed := ∅
attempts := {s · s ∈ STUDENT | (s 7�0)}

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL . . .
EXAMMISSED =̂ REFINES EXAMATTEMPT . . .
EXAMPASSED =̂ REFINES EXAMPASSED . . .
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Refinement Exams (2)

. . .
EVENTS

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL

ANY s grade
WHERE ... ∧ grade > 4 ∧ attempts(s) = 3
THEN

attempts(s) := attempts(s) + 1

EXAMMISSED =̂ REFINES EXAMATTEMPT

ANY s grade
WHERE ... ∧ grade > 4 ∧ attempts(s) < 3
THEN

attempts(s) := attempts(s) + 1
. . .
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Refinement Exams (3)

This refinment takes now also R4 into account.

Refinement preserves invariants
! Every possible event of RefinedExams is a possible event

in ExamsAbstract
⇒ Every invariant of ExamsAbstract is also an invariant of

RefinedExams

We will come back to this more formally ...
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Set Theory –
Equipment for formal modelling
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Set theory – a universal modelling
language

Not only used in Event-B.

Set theory also used for modelling in ...
Z
Object-Z, Z++
(classical) B
Event-B
Alloy
. . .
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Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

Every term in Event-B has a unqiue type.

Types are part of the syntax of Event-B and some expressions
are syntactically forbidden:

maths ∈ failed is syntactially invalid.

(remember: math ∈ SUBJECT , failed ⊆ STUDENT )

“You can’t compare apples and oranges.”
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Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

sets are objects in the logic

first order axioms define the semantics of sets

quantification over sets is allowed

quantification over predicates, functions is not allowed

(Foundation is a typed Zermelo-Fraenkel axiomatisation)
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Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

There are additional theories with fixed semantics
integers

more theories (datatypes) can be added by user
(an extension to the system)
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Types

1 BOOL and Z are types

2 Every carrier set declared in a CONTEXT is a type.

3 If T is a type then P(T ) is a type.
Semantics: P(T ) is the set of all subsets of T (powerset).

4 If T1,T2 are types then T1 × T2 is a type.
Semantics: T1 × T2 is the set of all ordered pairs (a,b) with
a ∈ T1 and b ∈ T2 (Cartesian produt).

Every expression E has a unqiue type τ(E).
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Types (2)

Set theory needs not be typed: Everything can be viewed a set.

Reasons to introduce types:
some specification errors may be detected as syntax errors
(even before the verification has started)

avoid Russell’s paradox

Russell’s paradox
Assume that the expression {s | φ} for any formula φ denotes a
set. Let R := {s | s 6∈ s}.
One observes: R ∈ R ⇐⇒ R 6∈ R  
(This crushed naive set theory in early 1900s.)
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(even before the verification has started)

avoid Russell’s paradox

Russell’s paradox
Assume that the expression {s | φ} for any formula φ denotes a
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Sets

Constructors for sets:
empty set ∅ : P(S)

set extension { . . . } : S∗ → P(S)
example: {1,2} : P(Z)
carrier sets C : P(C)
example: STUDENT : P(STUDENT )

powerset P(·) : P(S)→ P(P(S))
example: P({1,2}) = {∅, {1}, {2}, {1,2}} : P(Z)
product · × · : P(S)× P(T )→ P(S × T )
example: BOOL× {1} = {{true,1}, {false,1}} : P(BOOL× Z)
set comprehension {x · ϕ | e}
formula ϕ, term e : T , result of type P(T )
example: {x · x ≥ 2 | x ∗ x} = {4,9,16, . . .}
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Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1

if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2

if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.
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Kinds of relations

All relations E1↔ E2 R

dom ran

All surjections E1↔→ E2 (ran(R) = E2) R

dom ran

All total relations E1←↔ E2 (dom(R) = E1) R

dom ran

All total surjections E1↔↔ E2
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Functional relations
Observation
Every function f ∈ A→ B can be understood as the relation

{x · x ∈ A | x 7� f (x) } ∈ A↔ B

Partial functions E1 7→ E2 ⊆ E1↔ E2
(∀x , y , z · x 7� y ∈ R ∧ x 7� z ∈ R ⇒ y = z) (∗)

R

dom ran

Total functions E1→ E2
E1→ E2 = (E1 7→ E2) ∩ (E1←↔ E2)
(both partial function and total relation)

R

dom ran

Injections E1 7� E2
(∗) ∧ (∀x , y , z · x 7� z ∈ R ∧ y 7� z ∈ R ⇒ x = y )

R

dom ran
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Functional relations (2)

Intersection of relation classes give new classes:

Total injections E1� E2 = (E1→ E2) ∩ (E1 7� E2)

Partial surjections E1 7� E2 = (E1 7→ E2) ∩ (E1↔→ E2)

Total surjections E1� E2 = (E1→ E2) ∩ (E1 7� E2)

Bijections E1�� E2 = (E1� E2) ∩ (E1� E2)
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Example: File system

CONTEXT FileSystemCtx

SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs)
//most directories (but root) have a parent directory :

parent ∈ dirs 7→ dirs
//more precise

parent ∈ (dirs \ {root})→ dirs
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Relational operations

Relational application ·[·] : P(S × T )× P(S)→ P(T )
R[A] = {x , y · x 7� y ∈ R ∧ x ∈ A | y}

R

dom ran

A R[A]

B
R[B]=∅

Functional application ·(·) : P(S × T )× S → T

x = f (e) ⇐⇒ e 7� x ∈ f
{

f (e)
}
= f
[
{e}
]

Problem: What if f [{e}] is not a one-element set?
Solution: Well-definedness needs to be proved

1 f ∈ S 7→ T (not an arbitrary relation in S↔ T )
2 e ∈ dom(f )

everytime a functional application is used.
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Restrictions
Concept
Limit the domain or range of a relation to a subset.

AC− R

AC RA

R

dom ran

AC R := {x , y · x 7� y ∈ R ∧ x ∈ A | x 7� y} ⊆ R
AC− R := {x , y · x 7� y ∈ R ∧ x 6∈ A | x 7� y} ⊆ R

R B B := {x , y · x 7� y ∈ R ∧ y ∈ B | x 7� y} ⊆ R
R B− B := {x , y · x 7� y ∈ R ∧ y 6∈ B | x 7� y} ⊆ R

Relational application: R[A] = ran(AC R)
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Override

R C− S := ((dom S)C− R) ∪ S

x 7� y ∈ R C− S ⇐⇒

{
x 7� y ∈ S if x ∈ dom(S)

x 7� y ∈ R if x 6∈ dom(S)

“Clear” dom(S) in R and “replace” by S.

Special case: f ∈ A→ B,g ∈ A 7→B implies f C− g ∈ A→ B
f C− {x 7� y} updates function f in one place x

Caution: C− and C− are different symbols
Syntax sometimes ⊕ instead of C−
Compare Updates in Dynamic Logic for KeY.
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Forward composition

x 7� y ∈ R ; S ⇐⇒ ∃z · x 7� z ∈ R ∧ z 7� y ∈ S

x 7� y is in the composition R ; S if there is a transmitting
element z with both x 7� z ∈ R and z 7� y ∈ S.

x
z

y

R ; S

R S

(There is also backward composition R ◦ S = S ; R)
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Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,depth
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs) ∧ depth ∈ dirs → N ∧

∀d ·
(
(depth(d) > 0⇒ depth[tree[{d}]] = {depth(d)− 1})

∧ (depth(d) = 0⇒ {d}C tree B− files = ∅)
)
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Event-B –
Events
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Machine (systematic)

MACHINE name

SEES context

VARIABLES vars

INVARIANTS inv(vars)

EVENTS
. . .

END

The symbols in context can be used in inv even if not
mentioned explicitly.
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Events

EVENT M

// the following are the parameters,
// the input signals, nondeterministic choices

ANY prms

// the preconditions, conditions on the input values
WHERE guard(vars,prms)

// evolution of the program variables when the event “fires”
THEN

actions
END

There is one more contruct (WITH) that we omit here.
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Actions (Generalised Substitutions)

Deterministic actions
“Assignment” x := t
Variable x and term t must have same type (τ(t) = τ(x))
After event, x has value of expression t

Example:

THEN
x := y
y := x

END // swaps values of variables x , y .

Unmentioned variable z does not change.

Remember the updates in KeY: {x := y‖y := x} has same effects.
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Actions (Generalised Substitutions)

Nondeterministic actions
x :| ϕ means “choose x such that ϕ”

Actions can have more than one resolution
ϕ is called the before-after-predicate (BAP)
variables without tick: before-state
variables with tick: after-state.

Example:

x , y :| x ′ = y ′ ∧ y ′ > y

After the action x and y are equal and y is strictly greater than
before the action.
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Actions (Generalised Substitutions)

Normal form
Every action can be defined as a before-after-predicate

bap(vars, vars′,prms)

with
1 vars the machines variables before the action
2 vars′ the machine variables after the action
3 prms the parameters of the event

x := t is short for x :| x ′ = t
x :∈ S is short for x :| x ′ ∈ S
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Initialisation

Values of the machine in the beginning?

Initial values defined by the special event INITIALISATION.

before-after-predicate bapinit and guard grdinit must not
refer to vars,
there is no “before-state”.

After the first state, only normal events trigger.
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Machine Semantics

Machine variables vars := v1, ..., vk with types T = T1× ...× Tk .

A state σ ∈ T is a vector, variable assignment.

A trace is a sequence of states σ0, σ1, . . . such that

first state σ0 is result of the initialisation event
every state σi results from an event which operates on σi−1
(for every i > 0).

σ0 σ1 σ2 σ3 σ4

init evt1 evt2 evt3 evt4 evt5
. . .

The semantics of a machine M is the set of all traces possible
for M.
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Event Parameters

Sources for indeterminism
indeterministic choices in bap’s (cf. :∈, :|)
event parameters

Event parameter may model:
content of messages passed around
indeterministic user input
unpredictable environment actions
a number, amount of data to operate with
. . .

Technically event parameters can be removed and replaced by
existential quantifiers.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 55/96



Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T
with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.
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Invariants

SAFETY: Do all states reachable by M satisfy inv?

bad state

All states T
inv

The red trace violates the invariant in two states.
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Proof Obligation INV

To show that inv(vars) is an invariant for machine M,
one proves for every event:

Invariants
Guards of the event
Before-after-predicate of the thevent

⇒
modified invariant
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Proof Obligation INV

To show that inv(vars) is an invariant for machine M,
one proves:

1 ∀prms, vars′·
grdinit(prms) ∧ bapinit(vars′,prms)→ inv(vars′)

(Invariant initally valid)

2 ∀prms, vars, vars′·
inv(vars) ∧ grde(vars,prms) ∧

bape(vars, vars′,prms)→ inv(vars′)
for every event e in M.
(Events preserve invariant)

Note: Proof Obligation INV is a sufficient criterion, but not
necessary. Necessary for inductive invariants.
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Inductive Invariant

MACHINE IndInv
VARIABLES x INVARIANTS x ∈ Z x ≥ 0
EVENTS

INITIALISATION =̂
x := 2

STEP =̂
x := 2 ∗ (x − 1)

There is only one trace:

(2,2,2,2, . . .)

invariant is fulfilled.
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Inductive Invariant – Won’t prove

Proof obligation INV for event STEP

inv(x) ∧ grd(x) ∧ bap(x , x ′) → inv(x ′)

x ≥ 0 ∧ x ′ = 2 ∗ (x − 1) → x ′ ≥ 0
 This is not valid! Invariant is not inductive.  

Counter-example: x = 0, x ′ = −2

All states T
inv

Reachable states
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Feasibility Proof Obligation FIS

Show that every action is feasible if the guard is true:

Invariants
Guards of the event

⇒
∃v ′ · before-after-predicate
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Feasibility Proof Obligation FIS

The action of an event is is possible if guard is true.

∀vars,prms · grde(vars,prms)→ ∃vars′ · bap(vars, vars′,prms)

Deterministic action: x := t
. . . nothing to show

Indeterministic action: x :∈ S
. . . show that S 6= ∅

Indeterministic action: x :| ϕ
. . . show satisfiability of ϕ

Thus impossible evolutions like x :| false or x :∈ ∅ are avoided
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Deadlock Freedom DLKF

Recap:
Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Proof Obligation
There is always an event that can trigger:

∀vars · inv(vars)⇒
∨

event e∈M

∃prms · grde(vars,prms)

Again, this is sufficient not necessary.
(The invariant may be too weak to imply deadlock freedom)
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Event-B –
Refinement
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Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x
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Refining Machines

MACHINE Abstract

SEES Context
VARIABLES varsA
INVARIANTS

invA(varsA)
EVENTS

INITIALISATION =̂ . . .
EVTA =̂ . . .

END

MACHINE Refined
REFINES Abstract

SEES Context
VARIABLES varsR
INVARIANTS

invR(varsA, varsR)
EVENTS

INITIALISATION =̂ . . .
EVTR =̂

REFINES EVTA . . .
END
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Machines as Relations

Every machine M defines:
a state space SM spanned by the types of varsM

the initialisation IM ⊆ SM

the transition relations EM;evt ∈ SM ↔ SM (for event evt)

Details
SM = τ(v1)× . . .× τ(vk ) (with varsM = v1, . . . , vk )

IM(p) = {s ∈ SM | grdinit(p) ∧ bapinit(s′,p)}
IM =

⋃
p

IM(p)

EM;evt(p) = {(s 7� s′) | grdevt(s,p) ∧ bapevt(s, s′,p)}
EM;evt =

⋃
p

EM;evt(p)
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Simple Refinement – Definition

Every trace of the refined machine R is
a trace of the abstract machine A.

Definition: Simple Refinement
Let R,A be two machines with the same state space S.
R is called a refinement of A if

1 IR ⊆ IA and

2 ER;evtR ⊆ EA;evtA for each event

(evtR is the event in R that refines event evtA from A)
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Loss of behaviour

Why is this problematic?

MACHINE A . . .
EVENTemergencyStop =̂
WHERE true THEN heavyMachine := stop
END

refined by

MACHINE R . . .
EVENTemergencyStop =̂ REFINES emergencyStop
WHERE false THEN heavyMachine := stop
END

ER;evt = ∅ =⇒ R refines A
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Loss of behaviour

Every trace for A has a refining trace for R.

More precisely
For every trace in A with triggered events evtA,1,evtA,2, . . .,
there is a trace in R with triggered events evtR,1,evtR,2, . . . and
evtR;i refines evtA;i .

Definition: Lockfree Refinement
Let R,A be two machines with the same state space S.
R is called a lockfree refinement of A if

1 IR ⊆ IA
2 IR 6= ∅
3 ER;evtR ⊆ EA;evtA for each event
4 dom(EA;evtA) ⊆ dom(ER;evtR ) for each event
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Coupling

More general notion of refinement
What if abstract machine A and refinement R have different
state spaces SA and SR?

Ü Couple abstract and refined state space.

C ∈ SR ↔ SA Coupling invariant / Gluing invariant

Example

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

C = {r 7�a | a = dom(r)} = {f ,m · (f 7�m) 7�m}
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Refinement – Coupling

Sensible to assume C a total relation:

C ∈ SR ←↔ SA

Often, coupling is a total function:

C ∈ SR → SA

Define one abstraction for any detailed state.
BUT sometimes, several possible abstractions per
concrete state sensible.
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Refinement – Coupled Traces

σ0 σ1 σ2 σ3 σ4
initA evtA1 evtA2 evtA3 evtA4 evtA5

. . .

χ0 χ1 χ2 χ3 χ4
initR evtR1 evtR2 evtR3 evtR4 evtR5

. . .

Refinement: R refines A
For every concrete trace (χ0, χ1, . . .) of R with events
(evtR

1 ,evtR
2 , ...) there exists an abstract trace (σ0, σ1, . . .) with

events (evtA
1 ,evtA

2 , . . .) such that
1 χi 7�σi ∈ C for all i ∈ N
2 evtR

i refines event evtA
i .
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Refinement – Definition

Definition: Refinement
Let R,A be two machines with state spaces SR,SA.
Let C ∈ SR ↔ RA be the coupling invariant.
R is called a refinement of A modulo C if

1 IR ⊆ C−1[IA] and
2 ER;evtR ⊆ C ; EA;evtA ; C−1 for each event.

(∀x , y · x 7� y ∈ R−1 ⇔ y 7� x ∈ R, inverse relation)
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Refinement – Path subsumption

σn σn+1evtA

χn χn+1evtR

C C

⊆

ER;evtR ⊆ C ; EA;evtA ; C−1
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Specifying Coupling

The coupling invariant is specified as
part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of
its abstraction.

Example (from slide 72)

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

openFiles =
dom(openModes)
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Proof Obligation GRD

Proof that event guard in refinement is stronger than in
abstract machine.
=⇒ Abstraction is enabled when refinement is.

Abstract invariants
Concrete invariants
Concrete event guard

=⇒
Abstract event guard

∀varsA, varsR ·

invA(varsA) ∧ invR(varsA, varsR) ∧ grdR(varsR)

⇒ grdA(varsA)

(Version w/o parameters, see literature for full version)
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Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

=⇒
Abstract before-after-predicate

Rem ER;evtR ⊆ C ; EA;evtA ; C−1

Obs The coupling invariant is only used for the before-state not
for the after-state.

? Why?
! Already proven condition INV implies invariant for

after-state.
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Event-B has more ...

Things not covered in these slides:

Witnesses for parameters dropped in refinements

Termination issues (variants)

Extended/Not extended events

Event merging

Sequential refinement

. . .
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Byzantine Agreement –
A case study verified with Event-B

Based on:
Roman Krenický and Mattias Ulbrich. Deductive Verification of a Byzantine
Agreement Protocol. Technical report (2010-7). Karlsruhe Institute of
Technology, Department of Informatics, 2010
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Byzantine Generals

“When shall we attack?”

agree on a
time even in the
presence of traitors
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Application in Avionics

“Which components
are operative?”

C2

C1

C2

C3

C4

agree on the set
of operative components
even in the presence of
faulty components
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Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

1

1

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

1

1

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96



Example Run 2

C1
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C4

1

X

X

Round 0
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Round 1
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1

Round 2

1
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Byzantine Agreement Algorithm

Verification Goals:

Validity If the transmitter tt is non-faulty, then all non-faulty
receivers agree on the value sent by tt .

Agreement Any two non-faulty receivers agree on the value
assigned to tt .
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Byzantine Agreement Algorithm

Round 0: Transmitter sends signed message to all receivers.

Round n: Component receive messages, verify signatures,
sign messages and pass them on.

GOAL: Prove that this algorithm has the “validity” and
“agreement” properties.
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Verification

Quote
We know of no area in computer science
or mathematics in which informal
reasoning is more likely to lead to errors
than in the study of this type of algorithm.

Taken from: The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, and Marshall Pease
ACM Transactions on Programming Languages and Systems
Volume 4, pp. 383–401,1982.
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Context for Byzantine Agreement

CONTEXT Context
SETS

MODULE

VALUE

CONSTANTS

faulty , transmitter ,V0

AXIOMS

faulty ⊆ MODULE

transmitter ∈ MODULE

V0 ∈ VALUE

finite(faulty)

END
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First machine

MACHINE Messages
SEES Context

VARIABLES

INVARIANTS

ty mess : messages ⊆ MODULE ×MODULE × VALUE

ty round : round ∈ N
ty collected : collected ∈ MODULE → P(VALUE)

. . .

messages messages being sent in the current round
round the number of the current round

collected values observed in previous rounds
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First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂

act1 : round := round + 1
act2 : messages :∈ P(MODULE

\ {transmitter}

× MODULE × VALUE)
act3 : collected := λm · collected(m) ∪

{v | (s,m, v) ∈ messages}

END
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First refinement: signed messages

All messages are signed in a trustworthy manner:
No forgery possible =⇒ Consider only relayed messages.

round k : s r
v

round k + 1: r n
v
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Signed messages (2)

round k : s r
v

round k + 1: r n
v

MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected

INVARIANTS

val1:∀s, r , v · (s, r , v) ∈ messages ⇒ v ∈ collected(transmitter)
val2: ∀n · collected(n) ⊆ collected(transmitter)

EVENTS

EVENTROUND REFINES ROUND =̂
act1, act3 as above

act2: messages :∈ P
({

(r , n, v) | (s, r , v) ∈ messages
})

was : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)

END
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Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList
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sees
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MessagesContext
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GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

Changes message representation:
msgs ⊆ MODULE×MODULE×P(MODULE)×VALUE
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Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

non-faulty modules behave well:

r 6∈ faulty ∧ (s, r , h, v) ∈ msgs =⇒
∀n ·

(
n 6∈ h =⇒ (r , n, h ∪ {r}, v) ∈ msgs′

)
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Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

hybrid fault model:

faulty = arbFault ∪ symFaulty

arbFaulty ∩ symFaulty = ∅
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Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

new event structure:

PROCESS EVENT refines SKIP

modifies internal data structures (invisible to abstract
machine) and

ROUND SWITCH refines ROUND

reproduces the effect of a round change from the in-
ternal data.

An implementation would refine PROCESS EVENT.
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Agreement!

In machine Guarantees:

round ≥ card(faulty) + 1 =⇒(
∀n,m·n /∈ faulty ∧m /∈ faulty ⇒

collected(n) = collected(m)
)

In machine HybridGuarantees:

round ≥ card(arbFaulty) + 1 =⇒(
∀n,m·n /∈ faulty ∧m /∈ faulty ⇒

collected(n) = collected(m)
)
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Verification Effort

Numbers
Size: 4 contexts, 12 machines, 106 invariants
Labour: approx. 4 person months
Proofs: 322 proof obligations
Automation: 74/322, 23%
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