
KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Applications of Formal Verification
Formal Software Design: Modelling in Event-B

Dr. Vladimir Klebanov · Dr. Mattias Ulbrich | SS 2015

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Literatur

Jean-Raymond Abrial:
Modelling in Event-B
System and Software
Enginieering
Cambridge University Press,
2010

B
Jean-Raymond Abrial:
The B-Book:
Assigning programs
to meanings
Cambridge University Press,
1996

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 2/96

Abstraction and Refinement –
Introduction

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 3/96

Late fault recovery is expensive

[“Extra Time Saves Money”, W. Knuffel, Computer Language, 1990]

Goal: Detect
faults here!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 4/96

Late fault recovery is expensive

[“Extra Time Saves Money”, W. Knuffel, Computer Language, 1990]

Goal: Detect
faults here!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 4/96

Reasons for system faults

Systems are inherently complex

Unconsidered situations, corner cases

Ambiguous natural language requirements

Component interplay

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 5/96

Reasons for system faults

Systems are inherently complex

Unconsidered situations, corner cases

Ambiguous natural language requirements

Component interplay

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 5/96

Reasons for system faults

Systems are inherently complex

Unconsidered situations, corner cases

Ambiguous natural language requirements

Component interplay

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 5/96

Reasons for system faults

Systems are inherently complex

Unconsidered situations, corner cases

Ambiguous natural language requirements

Component interplay

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 5/96

Reasons for system faults

Systems are inherently complex

Unconsidered situations, corner cases

Ambiguous natural language requirements

Component interplay

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 5/96

Abstraction

The only tool to master complexity is
abstraction.

CLIFF JONES

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 6/96

Abstraction and Refinement

Abstraction
Abstract

Concrete

Refinement

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 7/96

Abstraction and Refinement

Abstraction

Abstract

Concrete

Refinement

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 7/96

Abstraction and Refinement

Abstraction

Abstract

Concrete

Refinement

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 7/96

Abstraction and Refinement

Abstraction

Abstract

Concrete

Refinement

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 7/96

Abstraction and Refinement

Abstraction
Abstract

Concrete

Refinement

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 7/96

Abstraction

Abstraction
reduce system complexity
without removing important properties
make the model susceptible to formal analysis

and the inverse

Refinement
enrich abstract model with details
introduce a new particular aspect
iterative process: add complexity in a stepwise fashion

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 8/96

Abstraction in Engineering

Abstraction is an important tool in engineering

Established means of abstraction
Mechanical engineering: BLUEPRINTS

Electrical engineering: DATASHEETS

CIRCUIT DIAGRAMS

Architecture: FLOOR PLANS

. . .

Abstract descriptions remove unnecessary details,
concentrate on one aspect

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 9/96

Datasheet – Abstraction
Extracts from datasheet for an IC with four NAND gates

Aspect Behaviour

refined to

Aspect Geometry

refined to

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 10/96

Datasheet – Abstraction
Extracts from datasheet for an IC with four NAND gates

Aspect Behaviour

refined to

Aspect Geometry

refined to

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 10/96

Datasheet – Abstraction
Extracts from datasheet for an IC with four NAND gates

Aspect Behaviour

refined to

Aspect Geometry

refined to

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 10/96

Datasheet – Abstraction
Extracts from datasheet for an IC with four NAND gates

Aspect Behaviour

refined to

Aspect Geometry

refined to

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 10/96

Schematic Diagram vs. PCB Layout

Aspect
“Behaviour”
preserved

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 11/96

Schematic Diagram vs. PCB Layout

Aspect
“Behaviour”
preserved

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 11/96

Beck diagrams (1931)

Aspect
“Route planning”
is preserved

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 12/96

Beck diagrams (1931)

Aspect
“Route planning”
is preserved

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 12/96

Property preservation

Abstraction with focus on particular aspect
System properties w.r.t. that aspect must also hold in the
abstraction.

Refinement with focus on particular aspect
Properties of abstract model w.r.t. that aspect must be inherited
by the refined model.

That’s what we will formally prove
in the next sections.

Examples:
Abstraction: “The shortest tube travel from Liverpool St. to
Westminster has 8 stops and 2 changes.”
Refinement: Abstract : Input “a = 1” gives output “b = 1”
Concrete: High voltage on pin A gives high voltage on pin B

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 13/96

Property preservation

Abstraction with focus on particular aspect
System properties w.r.t. that aspect must also hold in the
abstraction.

Refinement with focus on particular aspect
Properties of abstract model w.r.t. that aspect must be inherited
by the refined model. That’s what we will formally prove

in the next sections.

Examples:
Abstraction: “The shortest tube travel from Liverpool St. to
Westminster has 8 stops and 2 changes.”
Refinement: Abstract : Input “a = 1” gives output “b = 1”
Concrete: High voltage on pin A gives high voltage on pin B

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 13/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction

reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique

reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique

reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique

reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique

reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique

reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique

reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique
reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique
reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique
reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique
reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique
reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

“Conceptual” vs “Technical” Abstraction
Two areas of abstraction and refinement in formal methods:

Conceptual abstraction
reduce complexity for more comprehensibility
focus on a particular system aspect
provided by designer/developer
refinement introduces new aspect

Abstraction as a technique
reduce complexity to enhance performance/reach of a tool
abstract from given predicates to uninterpreted predicates
computed automatically
refinement driven by failed proofs
(Counter-Example Guided Abstraction Refinement, CEGAR)

That’s what we will look
into in the next sections.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/96

Event-B –
Introduction

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 15/96

Event-B

EventB is a formalism for modelling and reasoning about
discrete systems.

for their structure (how can their state be described) and
for their behaviour (how can the evolution of their state be
described)

Models are formulated using set theory

Event-based evolution of the original B Method

Tool-support:
RODIN – deductive verification, theorem prover: proofs
Pro-B – model checking, animator: counterexamples

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 16/96

Central Concepts

Variables and Events
Variables model the current state within the state space.
Events describe operations to model the system behaviour

Invariants
properties to be maintained by system
formal proof obligations to show that

Refinement
Behaviour of refining model is compatible with abstract
model
formal proof obligation to show that
Hence, invariants of abstract model are inherited by
concrete model

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 17/96

Central Concepts

Variables and Events
Variables model the current state within the state space.
Events describe operations to model the system behaviour

Invariants
properties to be maintained by system
formal proof obligations to show that

Refinement
Behaviour of refining model is compatible with abstract
model
formal proof obligation to show that
Hence, invariants of abstract model are inherited by
concrete model

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 17/96

Contexts and Machines

Event-B models
systems state evolution over time, triggered by events

Event-B models consist of contexts and machines:

Contexts
Static, rigid, constant parts that do not change over time.

Machines
Dynamic, volatile, evolving parts that do change over time.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 18/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Contexts and Machines
Event-B models consist of contexts and machines:

Contexts
Carrier sets (ground types, universes, “urelements”)
Constants (state-independent symbols, rigid symbols)
Axioms (formulas valid by stipulation)
Theorems (formulas proved valid)

Machines
Context references (which symbols are available)
Variables (state-dependent symbols, non-rigid symbols,
program variables)
Invariants (formulas true in every reachable system state)
Events (state transition descriptions)

(Explanations or alternative names in parens)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/96

Introduction by Example

Students and Exams – Requirements
R1 Every student must take a final exam in a subject of their

choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

Ü Identify the context, the state and the events according to
the requirements R1–R3.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 20/96

Introduction by Example

Students and Exams – Requirements
R1 Every student must take a final exam in a subject of their

choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

Ü Identify the context, the state and the events according to
the requirements R1–R3.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 20/96

Introduction by Example

Students and Exams – Requirements
R1 Every student must take a final exam in a subject of their

choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

Ü Identify the context, the state and the events according to
the requirements R1–R3.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 20/96

Introduction by Example

Students and Exams – Requirements
R1 Every student must take a final exam in a subject of their

choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

Ü Identify the context, the state and the events according to
the requirements R1–R3.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 20/96

Introduction by Example

Students and Exams – Requirements
R1 Every student must take a final exam in a subject of their

choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

Ü Identify the context, the state and the events according to
the requirements R1–R3.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 20/96

Introduction by Example

Students and Exams – Requirements
R1 Every student must take a final exam in a subject of their

choice.

R2 They can have attempts without yet failing or passing.

R3 Eventually they can pass or fail, but never both.

Ü Identify the context, the state and the events according to
the requirements R1–R3.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 20/96

Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT
maths 6= physics // constants could have same value
siblings ⊆ STUDENT × STUDENT // function type
∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/96

Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT
maths 6= physics // constants could have same value
siblings ⊆ STUDENT × STUDENT // function type
∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/96

Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT
maths 6= physics // constants could have same value
siblings ⊆ STUDENT × STUDENT // function type
∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/96

Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT

maths 6= physics // constants could have same value
siblings ⊆ STUDENT × STUDENT // function type
∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/96

Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT
maths 6= physics // constants could have same value

siblings ⊆ STUDENT × STUDENT // function type
∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/96

Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT
maths 6= physics // constants could have same value
siblings ⊆ STUDENT × STUDENT // function type

∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/96

Exam Context

CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1
SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths ∈ SUBJECT // type of variables
physics ∈ SUBJECT
maths 6= physics // constants could have same value
siblings ⊆ STUDENT × STUDENT // function type
∀s · s ∈ STUDENT ⇒ (s 7� s) 6∈ siblings // irreflexive
// . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/96

Exam Machine

MACHINE ExamAbstract

SEES ExamCtxt

VARIABLES
passed failed

INVARIANTS
passed ⊆ STUDENT failed ⊆ STUDENT
passed ∩ failed = ∅ //R3

EVENTS
INITIALISATION =̂ . . .
ATTEMPTEXAM =̂ . . . //R2
PASSEXAM =̂ . . . //R3
FAILEXAM =̂ . . . //R3

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 22/96

Exam Machine

MACHINE ExamAbstract
SEES ExamCtxt

VARIABLES
passed failed

INVARIANTS
passed ⊆ STUDENT failed ⊆ STUDENT
passed ∩ failed = ∅ //R3

EVENTS
INITIALISATION =̂ . . .
ATTEMPTEXAM =̂ . . . //R2
PASSEXAM =̂ . . . //R3
FAILEXAM =̂ . . . //R3

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 22/96

Exam Machine

MACHINE ExamAbstract
SEES ExamCtxt

VARIABLES
passed failed

INVARIANTS
passed ⊆ STUDENT failed ⊆ STUDENT
passed ∩ failed = ∅ //R3

EVENTS
INITIALISATION =̂ . . .
ATTEMPTEXAM =̂ . . . //R2
PASSEXAM =̂ . . . //R3
FAILEXAM =̂ . . . //R3

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 22/96

Exam Machine

MACHINE ExamAbstract
SEES ExamCtxt

VARIABLES
passed failed

INVARIANTS
passed ⊆ STUDENT failed ⊆ STUDENT

passed ∩ failed = ∅ //R3

EVENTS
INITIALISATION =̂ . . .
ATTEMPTEXAM =̂ . . . //R2
PASSEXAM =̂ . . . //R3
FAILEXAM =̂ . . . //R3

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 22/96

Exam Machine

MACHINE ExamAbstract
SEES ExamCtxt

VARIABLES
passed failed

INVARIANTS
passed ⊆ STUDENT failed ⊆ STUDENT
passed ∩ failed = ∅ //R3

EVENTS
INITIALISATION =̂ . . .
ATTEMPTEXAM =̂ . . . //R2
PASSEXAM =̂ . . . //R3
FAILEXAM =̂ . . . //R3

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 22/96

Exam Machine

MACHINE ExamAbstract
SEES ExamCtxt

VARIABLES
passed failed

INVARIANTS
passed ⊆ STUDENT failed ⊆ STUDENT
passed ∩ failed = ∅ //R3

EVENTS
INITIALISATION =̂ . . .
ATTEMPTEXAM =̂ . . . //R2
PASSEXAM =̂ . . . //R3
FAILEXAM =̂ . . . //R3

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 22/96

Exam Machine (2)

MACHINE ExamAbstract
VARIABLES passed failed . . .

EVENTS
INITIALISATION =̂

failed := ∅
passed := ∅

PASSEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade > 4
THEN failed := failed ∪ {s}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 23/96

Exam Machine (2)

MACHINE ExamAbstract
VARIABLES passed failed . . .

EVENTS
INITIALISATION =̂

failed := ∅
passed := ∅

PASSEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade > 4
THEN failed := failed ∪ {s}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 23/96

Exam Machine (2)

MACHINE ExamAbstract
VARIABLES passed failed . . .

EVENTS
INITIALISATION =̂

failed := ∅
passed := ∅

PASSEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade > 4
THEN failed := failed ∪ {s}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 23/96

Invariant violated

MACHINE ExamAbstract
VARIABLES passed failed
INVARIANTS passed ∩ failed = ∅ . . .

EVENTS
PASSEXAM =̂

ANY s grade
WHERE s ∈ STUDENT ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT ∧ grade > 4
THEN failed := failed ∪ {s}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 24/96

Invariant violated

MACHINE ExamAbstract
VARIABLES passed failed
INVARIANTS passed ∩ failed = ∅ . . .

EVENTS
PASSEXAM =̂

ANY s grade
WHERE s ∈ STUDENT \ (failed ∪ passed) ∧ grade ≤ 4
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade
WHERE s ∈ STUDENT \ (failed ∪ passed) ∧ grade > 4
THEN failed := failed ∪ {s}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 24/96

Underspecified model

EVENTS
PASSEXAM =̂

ANY s grade WHERE grade ≤ 4 ∧ s ∈ . . .
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade WHERE grade > 4 ∧ s ∈ . . .
THEN failed := failed ∪ {s}

ATTEMPTEXAM =̂
ANY s grade WHERE grade ∈ N ∧ s ∈ . . .
THEN skip

Additional requirement
R4 Any student may attempt the exam three times and

ultimately fails if the fourth attempt is unsuccessful.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 25/96

Underspecified model

EVENTS
PASSEXAM =̂

ANY s grade WHERE grade ≤ 4 ∧ s ∈ . . .
THEN passed := passed ∪ {s}

FAILEXAM =̂
ANY s grade WHERE grade > 4 ∧ s ∈ . . .
THEN failed := failed ∪ {s}

ATTEMPTEXAM =̂
ANY s grade WHERE grade ∈ N ∧ s ∈ . . .
THEN skip

Additional requirement
R4 Any student may attempt the exam three times and

ultimately fails if the fourth attempt is unsuccessful.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 25/96

Refinement Exams (1)

MACHINE RefinedExams REFINES ExamsAbstract

VARIABLES passed attempts
INVARIANTS

attempts ∈ STUDENT → N // typing for attempts
failed = {s · attempts(s) = 4} // coupling invariant

EVENTS
INITIALISATION =̂ REFINES INITIALISATION

passed := ∅
attempts := {s · s ∈ STUDENT | (s 7�0)}

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL . . .
EXAMMISSED =̂ REFINES EXAMATTEMPT . . .
EXAMPASSED =̂ REFINES EXAMPASSED . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 26/96

Refinement Exams (1)

MACHINE RefinedExams REFINES ExamsAbstract
VARIABLES passed attempts

INVARIANTS
attempts ∈ STUDENT → N // typing for attempts
failed = {s · attempts(s) = 4} // coupling invariant

EVENTS
INITIALISATION =̂ REFINES INITIALISATION

passed := ∅
attempts := {s · s ∈ STUDENT | (s 7�0)}

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL . . .
EXAMMISSED =̂ REFINES EXAMATTEMPT . . .
EXAMPASSED =̂ REFINES EXAMPASSED . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 26/96

Refinement Exams (1)

MACHINE RefinedExams REFINES ExamsAbstract
VARIABLES passed attempts
INVARIANTS

attempts ∈ STUDENT → N // typing for attempts
failed = {s · attempts(s) = 4} // coupling invariant

EVENTS
INITIALISATION =̂ REFINES INITIALISATION

passed := ∅
attempts := {s · s ∈ STUDENT | (s 7�0)}

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL . . .
EXAMMISSED =̂ REFINES EXAMATTEMPT . . .
EXAMPASSED =̂ REFINES EXAMPASSED . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 26/96

Refinement Exams (1)

MACHINE RefinedExams REFINES ExamsAbstract
VARIABLES passed attempts
INVARIANTS

attempts ∈ STUDENT → N // typing for attempts
failed = {s · attempts(s) = 4} // coupling invariant

EVENTS
INITIALISATION =̂ REFINES INITIALISATION

passed := ∅
attempts := {s · s ∈ STUDENT | (s 7�0)}

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL . . .
EXAMMISSED =̂ REFINES EXAMATTEMPT . . .
EXAMPASSED =̂ REFINES EXAMPASSED . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 26/96

Refinement Exams (1)

MACHINE RefinedExams REFINES ExamsAbstract
VARIABLES passed attempts
INVARIANTS

attempts ∈ STUDENT → N // typing for attempts
failed = {s · attempts(s) = 4} // coupling invariant

EVENTS
INITIALISATION =̂ REFINES INITIALISATION

passed := ∅
attempts := {s · s ∈ STUDENT | (s 7�0)}

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL . . .
EXAMMISSED =̂ REFINES EXAMATTEMPT . . .
EXAMPASSED =̂ REFINES EXAMPASSED . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 26/96

Refinement Exams (2)

. . .
EVENTS

EXAMULTIMATEFAIL =̂ REFINES EXAMFAIL

ANY s grade
WHERE ... ∧ grade > 4 ∧ attempts(s) = 3
THEN

attempts(s) := attempts(s) + 1

EXAMMISSED =̂ REFINES EXAMATTEMPT

ANY s grade
WHERE ... ∧ grade > 4 ∧ attempts(s) < 3
THEN

attempts(s) := attempts(s) + 1
. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 27/96

Refinement Exams (3)

This refinment takes now also R4 into account.

Refinement preserves invariants
! Every possible event of RefinedExams is a possible event

in ExamsAbstract
⇒ Every invariant of ExamsAbstract is also an invariant of

RefinedExams

We will come back to this more formally ...

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 28/96

Set Theory –
Equipment for formal modelling

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 29/96

Set theory – a universal modelling
language

Not only used in Event-B.

Set theory also used for modelling in ...
Z
Object-Z, Z++
(classical) B
Event-B
Alloy
. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 30/96

Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

Every term in Event-B has a unqiue type.

Types are part of the syntax of Event-B and some expressions
are syntactically forbidden:

maths ∈ failed is syntactially invalid.

(remember: math ∈ SUBJECT , failed ⊆ STUDENT)

“You can’t compare apples and oranges.”

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 31/96

Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

sets are objects in the logic

first order axioms define the semantics of sets

quantification over sets is allowed

quantification over predicates, functions is not allowed

(Foundation is a typed Zermelo-Fraenkel axiomatisation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 32/96

Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

sets are objects in the logic

first order axioms define the semantics of sets

quantification over sets is allowed

quantification over predicates, functions is not allowed

(Foundation is a typed Zermelo-Fraenkel axiomatisation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 32/96

Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

sets are objects in the logic

first order axioms define the semantics of sets

quantification over sets is allowed

quantification over predicates, functions is not allowed

(Foundation is a typed Zermelo-Fraenkel axiomatisation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 32/96

Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

sets are objects in the logic

first order axioms define the semantics of sets

quantification over sets is allowed

quantification over predicates, functions is not allowed

(Foundation is a typed Zermelo-Fraenkel axiomatisation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 32/96

Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

sets are objects in the logic

first order axioms define the semantics of sets

quantification over sets is allowed

quantification over predicates, functions is not allowed

(Foundation is a typed Zermelo-Fraenkel axiomatisation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 32/96

Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

There are additional theories with fixed semantics
integers

more theories (datatypes) can be added by user
(an extension to the system)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 33/96

Types

1 BOOL and Z are types

2 Every carrier set declared in a CONTEXT is a type.

3 If T is a type then P(T) is a type.
Semantics: P(T) is the set of all subsets of T (powerset).

4 If T1,T2 are types then T1 × T2 is a type.
Semantics: T1 × T2 is the set of all ordered pairs (a,b) with
a ∈ T1 and b ∈ T2 (Cartesian produt).

Every expression E has a unqiue type τ(E).

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 34/96

Types

1 BOOL and Z are types

2 Every carrier set declared in a CONTEXT is a type.

3 If T is a type then P(T) is a type.
Semantics: P(T) is the set of all subsets of T (powerset).

4 If T1,T2 are types then T1 × T2 is a type.
Semantics: T1 × T2 is the set of all ordered pairs (a,b) with
a ∈ T1 and b ∈ T2 (Cartesian produt).

Every expression E has a unqiue type τ(E).

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 34/96

Types

1 BOOL and Z are types

2 Every carrier set declared in a CONTEXT is a type.

3 If T is a type then P(T) is a type.
Semantics: P(T) is the set of all subsets of T (powerset).

4 If T1,T2 are types then T1 × T2 is a type.
Semantics: T1 × T2 is the set of all ordered pairs (a,b) with
a ∈ T1 and b ∈ T2 (Cartesian produt).

Every expression E has a unqiue type τ(E).

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 34/96

Types

1 BOOL and Z are types

2 Every carrier set declared in a CONTEXT is a type.

3 If T is a type then P(T) is a type.
Semantics: P(T) is the set of all subsets of T (powerset).

4 If T1,T2 are types then T1 × T2 is a type.
Semantics: T1 × T2 is the set of all ordered pairs (a,b) with
a ∈ T1 and b ∈ T2 (Cartesian produt).

Every expression E has a unqiue type τ(E).

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 34/96

Types

1 BOOL and Z are types

2 Every carrier set declared in a CONTEXT is a type.

3 If T is a type then P(T) is a type.
Semantics: P(T) is the set of all subsets of T (powerset).

4 If T1,T2 are types then T1 × T2 is a type.
Semantics: T1 × T2 is the set of all ordered pairs (a,b) with
a ∈ T1 and b ∈ T2 (Cartesian produt).

Every expression E has a unqiue type τ(E).

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 34/96

Types (2)

Set theory needs not be typed: Everything can be viewed a set.

Reasons to introduce types:
some specification errors may be detected as syntax errors
(even before the verification has started)

avoid Russell’s paradox

Russell’s paradox
Assume that the expression {s | φ} for any formula φ denotes a
set. Let R := {s | s 6∈ s}.
One observes: R ∈ R ⇐⇒ R 6∈ R
(This crushed naive set theory in early 1900s.)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 35/96

Types (2)

Set theory needs not be typed: Everything can be viewed a set.

Reasons to introduce types:
some specification errors may be detected as syntax errors
(even before the verification has started)

avoid Russell’s paradox

Russell’s paradox
Assume that the expression {s | φ} for any formula φ denotes a
set. Let R := {s | s 6∈ s}.

One observes: R ∈ R ⇐⇒ R 6∈ R
(This crushed naive set theory in early 1900s.)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 35/96

Types (2)

Set theory needs not be typed: Everything can be viewed a set.

Reasons to introduce types:
some specification errors may be detected as syntax errors
(even before the verification has started)

avoid Russell’s paradox

Russell’s paradox
Assume that the expression {s | φ} for any formula φ denotes a
set. Let R := {s | s 6∈ s}.
One observes: R ∈ R ⇐⇒ R 6∈ R

(This crushed naive set theory in early 1900s.)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 35/96

Types (2)

Set theory needs not be typed: Everything can be viewed a set.

Reasons to introduce types:
some specification errors may be detected as syntax errors
(even before the verification has started)

avoid Russell’s paradox

Russell’s paradox
Assume that the expression {s | φ} for any formula φ denotes a
set. Let R := {s | s 6∈ s}. Not allowed with types.
One observes: R ∈ R ⇐⇒ R 6∈ R
(This crushed naive set theory in early 1900s.)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 35/96

Sets

Constructors for sets:
empty set ∅ : P(S)

set extension { . . . } : S∗ → P(S)
example: {1,2} : P(Z)
carrier sets C : P(C)
example: STUDENT : P(STUDENT)

powerset P(·) : P(S)→ P(P(S))
example: P({1,2}) = {∅, {1}, {2}, {1,2}} : P(Z)
product · × · : P(S)× P(T)→ P(S × T)
example: BOOL× {1} = {{true,1}, {false,1}} : P(BOOL× Z)
set comprehension {x · ϕ | e}
formula ϕ, term e : T , result of type P(T)
example: {x · x ≥ 2 | x ∗ x} = {4,9,16, . . .}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 36/96

Sets

Constructors for sets:
empty set ∅ : P(S)

set extension { . . . } : S∗ → P(S)
example: {1,2} : P(Z)

carrier sets C : P(C)
example: STUDENT : P(STUDENT)

powerset P(·) : P(S)→ P(P(S))
example: P({1,2}) = {∅, {1}, {2}, {1,2}} : P(Z)
product · × · : P(S)× P(T)→ P(S × T)
example: BOOL× {1} = {{true,1}, {false,1}} : P(BOOL× Z)
set comprehension {x · ϕ | e}
formula ϕ, term e : T , result of type P(T)
example: {x · x ≥ 2 | x ∗ x} = {4,9,16, . . .}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 36/96

Sets

Constructors for sets:
empty set ∅ : P(S)

set extension { . . . } : S∗ → P(S)
example: {1,2} : P(Z)
carrier sets C : P(C)
example: STUDENT : P(STUDENT)

powerset P(·) : P(S)→ P(P(S))
example: P({1,2}) = {∅, {1}, {2}, {1,2}} : P(Z)
product · × · : P(S)× P(T)→ P(S × T)
example: BOOL× {1} = {{true,1}, {false,1}} : P(BOOL× Z)
set comprehension {x · ϕ | e}
formula ϕ, term e : T , result of type P(T)
example: {x · x ≥ 2 | x ∗ x} = {4,9,16, . . .}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 36/96

Sets

Constructors for sets:
empty set ∅ : P(S)

set extension { . . . } : S∗ → P(S)
example: {1,2} : P(Z)
carrier sets C : P(C)
example: STUDENT : P(STUDENT)

powerset P(·) : P(S)→ P(P(S))
example: P({1,2}) = {∅, {1}, {2}, {1,2}} : P(Z)

product · × · : P(S)× P(T)→ P(S × T)
example: BOOL× {1} = {{true,1}, {false,1}} : P(BOOL× Z)
set comprehension {x · ϕ | e}
formula ϕ, term e : T , result of type P(T)
example: {x · x ≥ 2 | x ∗ x} = {4,9,16, . . .}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 36/96

Sets

Constructors for sets:
empty set ∅ : P(S)

set extension { . . . } : S∗ → P(S)
example: {1,2} : P(Z)
carrier sets C : P(C)
example: STUDENT : P(STUDENT)

powerset P(·) : P(S)→ P(P(S))
example: P({1,2}) = {∅, {1}, {2}, {1,2}} : P(Z)
product · × · : P(S)× P(T)→ P(S × T)
example: BOOL× {1} = {{true,1}, {false,1}} : P(BOOL× Z)

set comprehension {x · ϕ | e}
formula ϕ, term e : T , result of type P(T)
example: {x · x ≥ 2 | x ∗ x} = {4,9,16, . . .}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 36/96

Sets

Constructors for sets:
empty set ∅ : P(S)

set extension { . . . } : S∗ → P(S)
example: {1,2} : P(Z)
carrier sets C : P(C)
example: STUDENT : P(STUDENT)

powerset P(·) : P(S)→ P(P(S))
example: P({1,2}) = {∅, {1}, {2}, {1,2}} : P(Z)
product · × · : P(S)× P(T)→ P(S × T)
example: BOOL× {1} = {{true,1}, {false,1}} : P(BOOL× Z)
set comprehension {x · ϕ | e}
formula ϕ, term e : T , result of type P(T)
example: {x · x ≥ 2 | x ∗ x} = {4,9,16, . . .}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 36/96

Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1

if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2

if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 37/96

Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1

if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2

if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 37/96

Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1

if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2

if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 37/96

Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1

if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2

if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 37/96

Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1

if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2

if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 37/96

Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1

if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2

if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 37/96

Relations

Relations are sets of pairs (tuples).

All relations: E1↔ E2 := P(E1 × E2)

Pairs (E1 7�E2) : τ(E1)× τ(E2)

Domain of a relation dom(R)
dom(R) = {x , y · (x 7� y) ∈ R | x}
example: dom(E1 × E2) = E1 if E2 6= ∅

Range of a relation ran(R)
ran(R) = {x , y · (x 7� y) ∈ R | y}
example: ran(E1 × E2) = E2 if E1 6= ∅

can be nested: (E1↔ E2)↔ E3 for a ternary relation etc.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 37/96

Kinds of relations

All relations E1↔ E2 R

dom ran

All surjections E1↔→ E2 (ran(R) = E2) R

dom ran

All total relations E1←↔ E2 (dom(R) = E1) R

dom ran

All total surjections E1↔↔ E2

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 38/96

Kinds of relations

All relations E1↔ E2 R

dom ran

All surjections E1↔→ E2 (ran(R) = E2) R

dom ran

All total relations E1←↔ E2 (dom(R) = E1) R

dom ran

All total surjections E1↔↔ E2

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 38/96

Kinds of relations

All relations E1↔ E2 R

dom ran

All surjections E1↔→ E2 (ran(R) = E2) R

dom ran

All total relations E1←↔ E2 (dom(R) = E1) R

dom ran

All total surjections E1↔↔ E2

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 38/96

Kinds of relations

All relations E1↔ E2 R

dom ran

All surjections E1↔→ E2 (ran(R) = E2) R

dom ran

All total relations E1←↔ E2 (dom(R) = E1) R

dom ran

All total surjections E1↔↔ E2

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 38/96

Functional relations
Observation
Every function f ∈ A→ B can be understood as the relation

{x · x ∈ A | x 7� f (x) } ∈ A↔ B

Partial functions E1 7→ E2 ⊆ E1↔ E2
(∀x , y , z · x 7� y ∈ R ∧ x 7� z ∈ R ⇒ y = z) (∗)

R

dom ran

Total functions E1→ E2
E1→ E2 = (E1 7→ E2) ∩ (E1←↔ E2)
(both partial function and total relation)

R

dom ran

Injections E1 7� E2
(∗) ∧ (∀x , y , z · x 7� z ∈ R ∧ y 7� z ∈ R ⇒ x = y)

R

dom ran

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 39/96

Functional relations
Observation
Every function f ∈ A→ B can be understood as the relation

{x · x ∈ A | x 7� f (x) } ∈ A↔ B

Partial functions E1 7→ E2 ⊆ E1↔ E2
(∀x , y , z · x 7� y ∈ R ∧ x 7� z ∈ R ⇒ y = z) (∗)

R

dom ran

Total functions E1→ E2
E1→ E2 = (E1 7→ E2) ∩ (E1←↔ E2)
(both partial function and total relation)

R

dom ran

Injections E1 7� E2
(∗) ∧ (∀x , y , z · x 7� z ∈ R ∧ y 7� z ∈ R ⇒ x = y)

R

dom ran

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 39/96

Functional relations
Observation
Every function f ∈ A→ B can be understood as the relation

{x · x ∈ A | x 7� f (x) } ∈ A↔ B

Partial functions E1 7→ E2 ⊆ E1↔ E2
(∀x , y , z · x 7� y ∈ R ∧ x 7� z ∈ R ⇒ y = z) (∗)

R

dom ran

Total functions E1→ E2
E1→ E2 = (E1 7→ E2) ∩ (E1←↔ E2)
(both partial function and total relation)

R

dom ran

Injections E1 7� E2
(∗) ∧ (∀x , y , z · x 7� z ∈ R ∧ y 7� z ∈ R ⇒ x = y)

R

dom ran

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 39/96

Functional relations (2)

Intersection of relation classes give new classes:

Total injections E1� E2 = (E1→ E2) ∩ (E1 7� E2)

Partial surjections E1 7� E2 = (E1 7→ E2) ∩ (E1↔→ E2)

Total surjections E1� E2 = (E1→ E2) ∩ (E1 7� E2)

Bijections E1�� E2 = (E1� E2) ∩ (E1� E2)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 40/96

Example: File system

CONTEXT FileSystemCtx

SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs)
//most directories (but root) have a parent directory :

parent ∈ dirs 7→ dirs
//more precise

parent ∈ (dirs \ {root})→ dirs

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 41/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT

CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs)
//most directories (but root) have a parent directory :

parent ∈ dirs 7→ dirs
//more precise

parent ∈ (dirs \ {root})→ dirs

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 41/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs)
//most directories (but root) have a parent directory :

parent ∈ dirs 7→ dirs
//more precise

parent ∈ (dirs \ {root})→ dirs

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 41/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent

INVARIANTS
tree ∈ dirs↔ (files ∪ dirs)
//most directories (but root) have a parent directory :

parent ∈ dirs 7→ dirs
//more precise

parent ∈ (dirs \ {root})→ dirs

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 41/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs)

//most directories (but root) have a parent directory :
parent ∈ dirs 7→ dirs
//more precise

parent ∈ (dirs \ {root})→ dirs

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 41/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs)
//most directories (but root) have a parent directory :

parent ∈ dirs 7→ dirs

//more precise
parent ∈ (dirs \ {root})→ dirs

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 41/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,parent
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs)
//most directories (but root) have a parent directory :

parent ∈ dirs 7→ dirs
//more precise

parent ∈ (dirs \ {root})→ dirs

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 41/96

Relational operations

Relational application ·[·] : P(S × T)× P(S)→ P(T)
R[A] = {x , y · x 7� y ∈ R ∧ x ∈ A | y}

R

dom ran

A R[A]

B
R[B]=∅

Functional application ·(·) : P(S × T)× S → T

x = f (e) ⇐⇒ e 7� x ∈ f
{

f (e)
}
= f
[
{e}
]

Problem: What if f [{e}] is not a one-element set?
Solution: Well-definedness needs to be proved

1 f ∈ S 7→ T (not an arbitrary relation in S↔ T)
2 e ∈ dom(f)

everytime a functional application is used.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 42/96

Relational operations

Relational application ·[·] : P(S × T)× P(S)→ P(T)
R[A] = {x , y · x 7� y ∈ R ∧ x ∈ A | y}

R

dom ran

A R[A]

B
R[B]=∅

Functional application ·(·) : P(S × T)× S → T

x = f (e) ⇐⇒ e 7� x ∈ f
{

f (e)
}
= f
[
{e}
]

Problem: What if f [{e}] is not a one-element set?
Solution: Well-definedness needs to be proved

1 f ∈ S 7→ T (not an arbitrary relation in S↔ T)
2 e ∈ dom(f)

everytime a functional application is used.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 42/96

Relational operations

Relational application ·[·] : P(S × T)× P(S)→ P(T)
R[A] = {x , y · x 7� y ∈ R ∧ x ∈ A | y}

R

dom ran

A R[A]

B
R[B]=∅

Functional application ·(·) : P(S × T)× S → T

x = f (e) ⇐⇒ e 7� x ∈ f
{

f (e)
}
= f
[
{e}
]

Problem: What if f [{e}] is not a one-element set?
Solution: Well-definedness needs to be proved

1 f ∈ S 7→ T (not an arbitrary relation in S↔ T)
2 e ∈ dom(f)

everytime a functional application is used.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 42/96

Relational operations

Relational application ·[·] : P(S × T)× P(S)→ P(T)
R[A] = {x , y · x 7� y ∈ R ∧ x ∈ A | y}

Functional application ·(·) : P(S × T)× S → T

x = f (e) ⇐⇒ e 7� x ∈ f
{

f (e)
}
= f
[
{e}
]

Problem: What if f [{e}] is not a one-element set?
Solution: Well-definedness needs to be proved

1 f ∈ S 7→ T (not an arbitrary relation in S↔ T)
2 e ∈ dom(f)

everytime a functional application is used.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 42/96

Relational operations

Relational application ·[·] : P(S × T)× P(S)→ P(T)
R[A] = {x , y · x 7� y ∈ R ∧ x ∈ A | y}

Functional application ·(·) : P(S × T)× S → T

x = f (e) ⇐⇒ e 7� x ∈ f
{

f (e)
}
= f
[
{e}
]

Problem: What if f [{e}] is not a one-element set?

Solution: Well-definedness needs to be proved
1 f ∈ S 7→ T (not an arbitrary relation in S↔ T)
2 e ∈ dom(f)

everytime a functional application is used.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 42/96

Relational operations

Relational application ·[·] : P(S × T)× P(S)→ P(T)
R[A] = {x , y · x 7� y ∈ R ∧ x ∈ A | y}

Functional application ·(·) : P(S × T)× S → T

x = f (e) ⇐⇒ e 7� x ∈ f
{

f (e)
}
= f
[
{e}
]

Problem: What if f [{e}] is not a one-element set?
Solution: Well-definedness needs to be proved

1 f ∈ S 7→ T (not an arbitrary relation in S↔ T)
2 e ∈ dom(f)

everytime a functional application is used.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 42/96

Restrictions
Concept
Limit the domain or range of a relation to a subset.

AC− R

AC RA

R

dom ran

AC R := {x , y · x 7� y ∈ R ∧ x ∈ A | x 7� y} ⊆ R
AC− R := {x , y · x 7� y ∈ R ∧ x 6∈ A | x 7� y} ⊆ R

R B B := {x , y · x 7� y ∈ R ∧ y ∈ B | x 7� y} ⊆ R
R B− B := {x , y · x 7� y ∈ R ∧ y 6∈ B | x 7� y} ⊆ R

Relational application: R[A] = ran(AC R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 43/96

Restrictions
Concept
Limit the domain or range of a relation to a subset.

AC− R

AC R

A
R

dom ran

AC R := {x , y · x 7� y ∈ R ∧ x ∈ A | x 7� y} ⊆ R
AC− R := {x , y · x 7� y ∈ R ∧ x 6∈ A | x 7� y} ⊆ R

R B B := {x , y · x 7� y ∈ R ∧ y ∈ B | x 7� y} ⊆ R
R B− B := {x , y · x 7� y ∈ R ∧ y 6∈ B | x 7� y} ⊆ R

Relational application: R[A] = ran(AC R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 43/96

Restrictions
Concept
Limit the domain or range of a relation to a subset.

AC− R

AC RA
R

dom ran

AC R := {x , y · x 7� y ∈ R ∧ x ∈ A | x 7� y} ⊆ R
AC− R := {x , y · x 7� y ∈ R ∧ x 6∈ A | x 7� y} ⊆ R

R B B := {x , y · x 7� y ∈ R ∧ y ∈ B | x 7� y} ⊆ R
R B− B := {x , y · x 7� y ∈ R ∧ y 6∈ B | x 7� y} ⊆ R

Relational application: R[A] = ran(AC R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 43/96

Restrictions
Concept
Limit the domain or range of a relation to a subset.

AC− R

AC RA
R

dom ran

AC R := {x , y · x 7� y ∈ R ∧ x ∈ A | x 7� y} ⊆ R
AC− R := {x , y · x 7� y ∈ R ∧ x 6∈ A | x 7� y} ⊆ R

R B B := {x , y · x 7� y ∈ R ∧ y ∈ B | x 7� y} ⊆ R
R B− B := {x , y · x 7� y ∈ R ∧ y 6∈ B | x 7� y} ⊆ R

Relational application: R[A] = ran(AC R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 43/96

Restrictions
Concept
Limit the domain or range of a relation to a subset.

AC− R

AC RA
R

dom ran

AC R := {x , y · x 7� y ∈ R ∧ x ∈ A | x 7� y} ⊆ R
AC− R := {x , y · x 7� y ∈ R ∧ x 6∈ A | x 7� y} ⊆ R

R B B := {x , y · x 7� y ∈ R ∧ y ∈ B | x 7� y} ⊆ R
R B− B := {x , y · x 7� y ∈ R ∧ y 6∈ B | x 7� y} ⊆ R

Relational application: R[A] = ran(AC R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 43/96

Override

R C− S := ((dom S)C− R) ∪ S

x 7� y ∈ R C− S ⇐⇒

{
x 7� y ∈ S if x ∈ dom(S)

x 7� y ∈ R if x 6∈ dom(S)

“Clear” dom(S) in R and “replace” by S.

Special case: f ∈ A→ B,g ∈ A 7→B implies f C− g ∈ A→ B
f C− {x 7� y} updates function f in one place x

Caution: C− and C− are different symbols
Syntax sometimes ⊕ instead of C−
Compare Updates in Dynamic Logic for KeY.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 44/96

Override

R C− S := ((dom S)C− R) ∪ S

x 7� y ∈ R C− S ⇐⇒

{
x 7� y ∈ S if x ∈ dom(S)

x 7� y ∈ R if x 6∈ dom(S)

“Clear” dom(S) in R and “replace” by S.
Special case: f ∈ A→ B,g ∈ A 7→B implies f C− g ∈ A→ B

f C− {x 7� y} updates function f in one place x

Caution: C− and C− are different symbols
Syntax sometimes ⊕ instead of C−
Compare Updates in Dynamic Logic for KeY.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 44/96

Override

R C− S := ((dom S)C− R) ∪ S

x 7� y ∈ R C− S ⇐⇒

{
x 7� y ∈ S if x ∈ dom(S)

x 7� y ∈ R if x 6∈ dom(S)

“Clear” dom(S) in R and “replace” by S.
Special case: f ∈ A→ B,g ∈ A 7→B implies f C− g ∈ A→ B
f C− {x 7� y} updates function f in one place x

Caution: C− and C− are different symbols
Syntax sometimes ⊕ instead of C−
Compare Updates in Dynamic Logic for KeY.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 44/96

Override

R C− S := ((dom S)C− R) ∪ S

x 7� y ∈ R C− S ⇐⇒

{
x 7� y ∈ S if x ∈ dom(S)

x 7� y ∈ R if x 6∈ dom(S)

“Clear” dom(S) in R and “replace” by S.
Special case: f ∈ A→ B,g ∈ A 7→B implies f C− g ∈ A→ B
f C− {x 7� y} updates function f in one place x

Caution: C− and C− are different symbols

Syntax sometimes ⊕ instead of C−
Compare Updates in Dynamic Logic for KeY.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 44/96

Override

R C− S := ((dom S)C− R) ∪ S

x 7� y ∈ R C− S ⇐⇒

{
x 7� y ∈ S if x ∈ dom(S)

x 7� y ∈ R if x 6∈ dom(S)

“Clear” dom(S) in R and “replace” by S.
Special case: f ∈ A→ B,g ∈ A 7→B implies f C− g ∈ A→ B
f C− {x 7� y} updates function f in one place x

Caution: C− and C− are different symbols
Syntax sometimes ⊕ instead of C−

Compare Updates in Dynamic Logic for KeY.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 44/96

Override

R C− S := ((dom S)C− R) ∪ S

x 7� y ∈ R C− S ⇐⇒

{
x 7� y ∈ S if x ∈ dom(S)

x 7� y ∈ R if x 6∈ dom(S)

“Clear” dom(S) in R and “replace” by S.
Special case: f ∈ A→ B,g ∈ A 7→B implies f C− g ∈ A→ B
f C− {x 7� y} updates function f in one place x

Caution: C− and C− are different symbols
Syntax sometimes ⊕ instead of C−
Compare Updates in Dynamic Logic for KeY.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 44/96

Forward composition

x 7� y ∈ R ; S ⇐⇒ ∃z · x 7� z ∈ R ∧ z 7� y ∈ S

x 7� y is in the composition R ; S if there is a transmitting
element z with both x 7� z ∈ R and z 7� y ∈ S.

x
z

y

R ; S

R S

(There is also backward composition R ◦ S = S ; R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 45/96

Forward composition

x 7� y ∈ R ; S ⇐⇒ ∃z · x 7� z ∈ R ∧ z 7� y ∈ S

x 7� y is in the composition R ; S if there is a transmitting
element z with both x 7� z ∈ R and z 7� y ∈ S.

x
z

yR ; S

R S

(There is also backward composition R ◦ S = S ; R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 45/96

Forward composition

x 7� y ∈ R ; S ⇐⇒ ∃z · x 7� z ∈ R ∧ z 7� y ∈ S

x 7� y is in the composition R ; S if there is a transmitting
element z with both x 7� z ∈ R and z 7� y ∈ S.

x
z

yR ; S

R S

(There is also backward composition R ◦ S = S ; R)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 45/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,depth
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs) ∧ depth ∈ dirs → N ∧

∀d ·
(
(depth(d) > 0⇒ depth[tree[{d}]] = {depth(d)− 1})

∧ (depth(d) = 0⇒ {d}C tree B− files = ∅)
)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 46/96

Example: File system

CONTEXT FileSystemCtx
SETS OBJECT
CONSTANTS files,dirs, root
AXIOMS files ⊆ OBJECT ,dirs ⊆ OBJECT ,

root ∈ dirs, files ∩ dirs = ∅

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree,depth
INVARIANTS

tree ∈ dirs↔ (files ∪ dirs) ∧ depth ∈ dirs → N ∧
∀d ·

(
(depth(d) > 0⇒ depth[tree[{d}]] = {depth(d)− 1})

∧ (depth(d) = 0⇒ {d}C tree B− files = ∅)
)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 46/96

Event-B –
Events

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 47/96

Machine (systematic)

MACHINE name

SEES context

VARIABLES vars

INVARIANTS inv(vars)

EVENTS
. . .

END

The symbols in context can be used in inv even if not
mentioned explicitly.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 48/96

Events

EVENT M

// the following are the parameters,
// the input signals, nondeterministic choices

ANY prms

// the preconditions, conditions on the input values
WHERE guard(vars,prms)

// evolution of the program variables when the event “fires”
THEN

actions
END

There is one more contruct (WITH) that we omit here.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 49/96

Actions (Generalised Substitutions)

Deterministic actions
“Assignment” x := t
Variable x and term t must have same type (τ(t) = τ(x))
After event, x has value of expression t

Example:

THEN
x := y
y := x

END // swaps values of variables x , y .

Unmentioned variable z does not change.

Remember the updates in KeY: {x := y‖y := x} has same effects.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 50/96

Actions (Generalised Substitutions)

Deterministic actions
“Assignment” x := t
Variable x and term t must have same type (τ(t) = τ(x))
After event, x has value of expression t

Example:

THEN
x := y
y := x

END // swaps values of variables x , y .

Unmentioned variable z does not change.

Remember the updates in KeY: {x := y‖y := x} has same effects.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 50/96

Actions (Generalised Substitutions)

Deterministic actions
“Assignment” x := t
Variable x and term t must have same type (τ(t) = τ(x))
After event, x has value of expression t

Example:

THEN
x := y
y := x

END // swaps values of variables x , y .

Unmentioned variable z does not change.

Remember the updates in KeY: {x := y‖y := x} has same effects.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 50/96

Actions (Generalised Substitutions)

Deterministic actions
“Assignment” x := t
Variable x and term t must have same type (τ(t) = τ(x))
After event, x has value of expression t

Example:

THEN
x := y
y := x

END // swaps values of variables x , y .

Unmentioned variable z does not change.

Remember the updates in KeY: {x := y‖y := x} has same effects.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 50/96

Actions (Generalised Substitutions)

Deterministic actions
“Assignment” x := t
Variable x and term t must have same type (τ(t) = τ(x))
After event, x has value of expression t

Example:

THEN
x := y
y := x

END // swaps values of variables x , y .

Unmentioned variable z does not change.

Remember the updates in KeY: {x := y‖y := x} has same effects.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 50/96

Actions (Generalised Substitutions)

Nondeterministic actions
x :| ϕ means “choose x such that ϕ”

Actions can have more than one resolution
ϕ is called the before-after-predicate (BAP)
variables without tick: before-state
variables with tick: after-state.

Example:

x , y :| x ′ = y ′ ∧ y ′ > y

After the action x and y are equal and y is strictly greater than
before the action.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 51/96

Actions (Generalised Substitutions)

Nondeterministic actions
x :| ϕ means “choose x such that ϕ”

Actions can have more than one resolution
ϕ is called the before-after-predicate (BAP)
variables without tick: before-state
variables with tick: after-state.

Example:

x , y :| x ′ = y ′ ∧ y ′ > y

After the action x and y are equal and y is strictly greater than
before the action.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 51/96

Actions (Generalised Substitutions)

Nondeterministic actions
x :| ϕ means “choose x such that ϕ”

Actions can have more than one resolution
ϕ is called the before-after-predicate (BAP)
variables without tick: before-state
variables with tick: after-state.

Example:

x , y :| x ′ = y ′ ∧ y ′ > y

After the action x and y are equal and y is strictly greater than
before the action.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 51/96

Actions (Generalised Substitutions)

Nondeterministic actions
x :| ϕ means “choose x such that ϕ”

Actions can have more than one resolution
ϕ is called the before-after-predicate (BAP)
variables without tick: before-state
variables with tick: after-state.

Example:

x , y :| x ′ = y ′ ∧ y ′ > y

After the action x and y are equal and y is strictly greater than
before the action.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 51/96

Actions (Generalised Substitutions)

Nondeterministic actions
x :| ϕ means “choose x such that ϕ”

Actions can have more than one resolution
ϕ is called the before-after-predicate (BAP)
variables without tick: before-state
variables with tick: after-state.

Example:

x , y :| x ′ = y ′ ∧ y ′ > y

After the action x and y are equal and y is strictly greater than
before the action.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 51/96

Actions (Generalised Substitutions)

Nondeterministic actions
x :| ϕ means “choose x such that ϕ”

Actions can have more than one resolution
ϕ is called the before-after-predicate (BAP)
variables without tick: before-state
variables with tick: after-state.

Example:

x , y :| x ′ = y ′ ∧ y ′ > y

After the action x and y are equal and y is strictly greater than
before the action.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 51/96

Actions (Generalised Substitutions)

Normal form
Every action can be defined as a before-after-predicate

bap(vars, vars′,prms)

with
1 vars the machines variables before the action
2 vars′ the machine variables after the action
3 prms the parameters of the event

x := t is short for x :| x ′ = t
x :∈ S is short for x :| x ′ ∈ S

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 52/96

Initialisation

Values of the machine in the beginning?

Initial values defined by the special event INITIALISATION.

before-after-predicate bapinit and guard grdinit must not
refer to vars,
there is no “before-state”.

After the first state, only normal events trigger.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 53/96

Initialisation

Values of the machine in the beginning?

Initial values defined by the special event INITIALISATION.

before-after-predicate bapinit and guard grdinit must not
refer to vars,
there is no “before-state”.

After the first state, only normal events trigger.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 53/96

Initialisation

Values of the machine in the beginning?

Initial values defined by the special event INITIALISATION.

before-after-predicate bapinit and guard grdinit must not
refer to vars,
there is no “before-state”.

After the first state, only normal events trigger.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 53/96

Initialisation

Values of the machine in the beginning?

Initial values defined by the special event INITIALISATION.

before-after-predicate bapinit and guard grdinit must not
refer to vars,
there is no “before-state”.

After the first state, only normal events trigger.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 53/96

Machine Semantics

Machine variables vars := v1, ..., vk with types T = T1× ...× Tk .

A state σ ∈ T is a vector, variable assignment.

A trace is a sequence of states σ0, σ1, . . . such that

first state σ0 is result of the initialisation event
every state σi results from an event which operates on σi−1
(for every i > 0).

σ0 σ1 σ2 σ3 σ4

init evt1 evt2 evt3 evt4 evt5
. . .

The semantics of a machine M is the set of all traces possible
for M.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 54/96

Event Parameters

Sources for indeterminism
indeterministic choices in bap’s (cf. :∈, :|)
event parameters

Event parameter may model:
content of messages passed around
indeterministic user input
unpredictable environment actions
a number, amount of data to operate with
. . .

Technically event parameters can be removed and replaced by
existential quantifiers.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 55/96

Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T
with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 56/96

Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T

with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 56/96

Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T
with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 56/96

Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T
with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 56/96

Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T
with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 56/96

Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T
with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 56/96

Semantics (more formally)

State space: T = T1 × . . .× Tk

Trace: t ∈ N→ T
with

∃prmsinit · grdinit(prmsinit) ∧ bapinit(t(0),prmsinit)

For n ∈ N1, there is e ∈ EVENTS such that
∃prmse · grde(t(i − 1),prmse) ∧ bape(t(i − 1), t(i),prmse)

Partial, finite trace trace: t ∈ 0..n→ T

Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 56/96

Invariants

SAFETY: Do all states reachable by M satisfy inv?

bad state

All states T
inv

The red trace violates the invariant in two states.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 57/96

Proof Obligation INV

To show that inv(vars) is an invariant for machine M,
one proves for every event:

Invariants
Guards of the event
Before-after-predicate of the thevent

⇒
modified invariant

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 58/96

Proof Obligation INV

To show that inv(vars) is an invariant for machine M,
one proves:

1 ∀prms, vars′·
grdinit(prms) ∧ bapinit(vars′,prms)→ inv(vars′)

(Invariant initally valid)

2 ∀prms, vars, vars′·
inv(vars) ∧ grde(vars,prms) ∧

bape(vars, vars′,prms)→ inv(vars′)
for every event e in M.
(Events preserve invariant)

Note: Proof Obligation INV is a sufficient criterion, but not
necessary. Necessary for inductive invariants.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 59/96

Proof Obligation INV

To show that inv(vars) is an invariant for machine M,
one proves:

1 ∀prms, vars′·
grdinit(prms) ∧ bapinit(vars′,prms)→ inv(vars′)

(Invariant initally valid)

2 ∀prms, vars, vars′·
inv(vars) ∧ grde(vars,prms) ∧

bape(vars, vars′,prms)→ inv(vars′)
for every event e in M.
(Events preserve invariant)

Note: Proof Obligation INV is a sufficient criterion, but not
necessary. Necessary for inductive invariants.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 59/96

Proof Obligation INV

To show that inv(vars) is an invariant for machine M,
one proves:

1 ∀prms, vars′·
grdinit ∧ bapinit → inv

(Invariant initally valid)

2 ∀prms, vars, vars′·
inv ∧ grde ∧

bape → inv ′

for every event e in M.
(Events preserve invariant)

Note: Proof Obligation INV is a sufficient criterion, but not
necessary. Necessary for inductive invariants.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 59/96

Proof Obligation INV

To show that inv(vars) is an invariant for machine M,
one proves:

1 ∀prms, vars′·
grdinit ∧ bapinit → inv

(Invariant initally valid)

2 ∀prms, vars, vars′·
inv ∧ grde ∧

bape → inv ′

for every event e in M.
(Events preserve invariant)

Note: Proof Obligation INV is a sufficient criterion, but not
necessary. Necessary for inductive invariants.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 59/96

Inductive Invariant

MACHINE IndInv
VARIABLES x INVARIANTS x ∈ Z x ≥ 0
EVENTS

INITIALISATION =̂
x := 2

STEP =̂
x := 2 ∗ (x − 1)

There is only one trace:

(2,2,2,2, . . .)

invariant is fulfilled.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 60/96

Inductive Invariant – Won’t prove

Proof obligation INV for event STEP

inv(x) ∧ grd(x) ∧ bap(x , x ′) → inv(x ′)

x ≥ 0 ∧ x ′ = 2 ∗ (x − 1) → x ′ ≥ 0
 This is not valid! Invariant is not inductive.

Counter-example: x = 0, x ′ = −2

All states T
inv

Reachable states

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 61/96

Inductive Invariant – Won’t prove

Proof obligation INV for event STEP

inv(x) ∧ grd(x) ∧ bap(x , x ′) → inv(x ′)
x ≥ 0 ∧ x ′ = 2 ∗ (x − 1) → x ′ ≥ 0

 This is not valid! Invariant is not inductive.
Counter-example: x = 0, x ′ = −2

All states T
inv

Reachable states

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 61/96

Inductive Invariant – Won’t prove

Proof obligation INV for event STEP

inv(x) ∧ grd(x) ∧ bap(x , x ′) → inv(x ′)
x ≥ 0 ∧ x ′ = 2 ∗ (x − 1) → x ′ ≥ 0

 This is not valid! Invariant is not inductive.
Counter-example: x = 0, x ′ = −2

All states T
inv

Reachable states

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 61/96

Inductive Invariant – Won’t prove

Proof obligation INV for event STEP

inv(x) ∧ grd(x) ∧ bap(x , x ′) → inv(x ′)
x ≥ 0 ∧ x ′ = 2 ∗ (x − 1) → x ′ ≥ 0

 This is not valid! Invariant is not inductive.
Counter-example: x = 0, x ′ = −2

All states T
inv

Reachable states

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 61/96

Feasibility Proof Obligation FIS

Show that every action is feasible if the guard is true:

Invariants
Guards of the event

⇒
∃v ′ · before-after-predicate

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 62/96

Feasibility Proof Obligation FIS

The action of an event is is possible if guard is true.

∀vars,prms · grde(vars,prms)→ ∃vars′ · bap(vars, vars′,prms)

Deterministic action: x := t
. . . nothing to show

Indeterministic action: x :∈ S
. . . show that S 6= ∅

Indeterministic action: x :| ϕ
. . . show satisfiability of ϕ

Thus impossible evolutions like x :| false or x :∈ ∅ are avoided

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 63/96

Deadlock Freedom DLKF

Recap:
Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Proof Obligation
There is always an event that can trigger:

∀vars · inv(vars)⇒
∨

event e∈M

∃prms · grde(vars,prms)

Again, this is sufficient not necessary.
(The invariant may be too weak to imply deadlock freedom)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 64/96

Deadlock Freedom DLKF

Recap:
Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Proof Obligation
There is always an event that can trigger:

∀vars · inv(vars)⇒
∨

event e∈M

∃prms · grde(vars,prms)

Again, this is sufficient not necessary.
(The invariant may be too weak to imply deadlock freedom)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 64/96

Deadlock Freedom DLKF

Recap:
Deadlock: no event e can be triggered, i.e.
∀prmse · ¬grde(t(n),prmse) for all events e.

Proof Obligation
There is always an event that can trigger:

∀vars · inv(vars)⇒
∨

event e∈M

∃prms · grde(vars,prms)

Again, this is sufficient not necessary.
(The invariant may be too weak to imply deadlock freedom)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 64/96

Event-B –
Refinement

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 65/96

Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 66/96

Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 66/96

Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 66/96

Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 66/96

Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 66/96

Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 66/96

Refinement in Event-B

MACHINE Abstract
VARIABLES x
INVARIANTS x ≥ 0

EVENTS INCREASE =̂
x :| x ′ ≥ x

MACHINE Refined
REFINES Abstract

VARIABLES x

EVENTS NEXTVAL =̂
REFINES INCREASE

x := 5 ∗ x2 + 3 ∗ x

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 66/96

Refining Machines

MACHINE Abstract

SEES Context
VARIABLES varsA
INVARIANTS

invA(varsA)
EVENTS

INITIALISATION =̂ . . .
EVTA =̂ . . .

END

MACHINE Refined
REFINES Abstract

SEES Context
VARIABLES varsR
INVARIANTS

invR(varsA, varsR)
EVENTS

INITIALISATION =̂ . . .
EVTR =̂

REFINES EVTA . . .
END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 67/96

Machines as Relations

Every machine M defines:
a state space SM spanned by the types of varsM

the initialisation IM ⊆ SM

the transition relations EM;evt ∈ SM ↔ SM (for event evt)

Details
SM = τ(v1)× . . .× τ(vk) (with varsM = v1, . . . , vk)

IM(p) = {s ∈ SM | grdinit(p) ∧ bapinit(s′,p)}
IM =

⋃
p

IM(p)

EM;evt(p) = {(s 7� s′) | grdevt(s,p) ∧ bapevt(s, s′,p)}
EM;evt =

⋃
p

EM;evt(p)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 68/96

Machines as Relations

Every machine M defines:
a state space SM spanned by the types of varsM

the initialisation IM ⊆ SM

the transition relations EM;evt ∈ SM ↔ SM (for event evt)

Details
SM = τ(v1)× . . .× τ(vk) (with varsM = v1, . . . , vk)

IM(p) = {s ∈ SM | grdinit(p) ∧ bapinit(s′,p)}

IM =
⋃
p

IM(p)

EM;evt(p) = {(s 7� s′) | grdevt(s,p) ∧ bapevt(s, s′,p)}
EM;evt =

⋃
p

EM;evt(p)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 68/96

Machines as Relations

Every machine M defines:
a state space SM spanned by the types of varsM

the initialisation IM ⊆ SM

the transition relations EM;evt ∈ SM ↔ SM (for event evt)

Details
SM = τ(v1)× . . .× τ(vk) (with varsM = v1, . . . , vk)

IM(p) = {s ∈ SM | grdinit(p) ∧ bapinit(s′,p)}
IM =

⋃
p

IM(p)

EM;evt(p) = {(s 7� s′) | grdevt(s,p) ∧ bapevt(s, s′,p)}
EM;evt =

⋃
p

EM;evt(p)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 68/96

Machines as Relations

Every machine M defines:
a state space SM spanned by the types of varsM

the initialisation IM ⊆ SM

the transition relations EM;evt ∈ SM ↔ SM (for event evt)

Details
SM = τ(v1)× . . .× τ(vk) (with varsM = v1, . . . , vk)

IM(p) = {s ∈ SM | grdinit(p) ∧ bapinit(s′,p)}
IM =

⋃
p

IM(p)

EM;evt(p) = {(s 7� s′) | grdevt(s,p) ∧ bapevt(s, s′,p)}

EM;evt =
⋃
p

EM;evt(p)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 68/96

Machines as Relations

Every machine M defines:
a state space SM spanned by the types of varsM

the initialisation IM ⊆ SM

the transition relations EM;evt ∈ SM ↔ SM (for event evt)

Details
SM = τ(v1)× . . .× τ(vk) (with varsM = v1, . . . , vk)

IM(p) = {s ∈ SM | grdinit(p) ∧ bapinit(s′,p)}
IM =

⋃
p

IM(p)

EM;evt(p) = {(s 7� s′) | grdevt(s,p) ∧ bapevt(s, s′,p)}
EM;evt =

⋃
p

EM;evt(p)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 68/96

Simple Refinement – Definition

Every trace of the refined machine R is
a trace of the abstract machine A.

Definition: Simple Refinement
Let R,A be two machines with the same state space S.
R is called a refinement of A if

1 IR ⊆ IA and

2 ER;evtR ⊆ EA;evtA for each event

(evtR is the event in R that refines event evtA from A)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 69/96

Simple Refinement – Definition

Every trace of the refined machine R is
a trace of the abstract machine A.

Definition: Simple Refinement
Let R,A be two machines with the same state space S.
R is called a refinement of A if

1 IR ⊆ IA and
2 ER;evtR ⊆ EA;evtA for each event

(evtR is the event in R that refines event evtA from A)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 69/96

Simple Refinement – Definition

Every trace of the refined machine R is
a trace of the abstract machine A.

Definition: Simple Refinement
Let R,A be two machines with the same state space S.
R is called a refinement of A if

1 IR ⊆ IA and
2 ER;evtR ⊆ EA;evtA for each event

(evtR is the event in R that refines event evtA from A)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 69/96

Loss of behaviour

Why is this problematic?

MACHINE A . . .
EVENTemergencyStop =̂
WHERE true THEN heavyMachine := stop
END

refined by

MACHINE R . . .
EVENTemergencyStop =̂ REFINES emergencyStop
WHERE false THEN heavyMachine := stop
END

ER;evt = ∅ =⇒ R refines A

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 70/96

Loss of behaviour

Why is this problematic?

MACHINE A . . .
EVENTemergencyStop =̂
WHERE true THEN heavyMachine := stop
END

refined by

MACHINE R . . .
EVENTemergencyStop =̂ REFINES emergencyStop
WHERE false THEN heavyMachine := stop
END

ER;evt = ∅ =⇒ R refines A

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 70/96

Loss of behaviour

Why is this problematic?

MACHINE A . . .
EVENTemergencyStop =̂
WHERE true THEN heavyMachine := stop
END

refined by

MACHINE R . . .
EVENTemergencyStop =̂ REFINES emergencyStop
WHERE false THEN heavyMachine := stop
END

ER;evt = ∅ =⇒ R refines A

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 70/96

Loss of behaviour

Every trace for A has a refining trace for R.

More precisely
For every trace in A with triggered events evtA,1,evtA,2, . . .,
there is a trace in R with triggered events evtR,1,evtR,2, . . . and
evtR;i refines evtA;i .

Definition: Lockfree Refinement
Let R,A be two machines with the same state space S.
R is called a lockfree refinement of A if

1 IR ⊆ IA
2 IR 6= ∅
3 ER;evtR ⊆ EA;evtA for each event
4 dom(EA;evtA) ⊆ dom(ER;evtR) for each event

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 71/96

Loss of behaviour

Every trace for A has a refining trace for R.

More precisely
For every trace in A with triggered events evtA,1,evtA,2, . . .,
there is a trace in R with triggered events evtR,1,evtR,2, . . . and
evtR;i refines evtA;i .

Definition: Lockfree Refinement
Let R,A be two machines with the same state space S.
R is called a lockfree refinement of A if

1 IR ⊆ IA
2 IR 6= ∅
3 ER;evtR ⊆ EA;evtA for each event
4 dom(EA;evtA) ⊆ dom(ER;evtR) for each event

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 71/96

Loss of behaviour

Every trace for A has a refining trace for R.

More precisely
For every trace in A with triggered events evtA,1,evtA,2, . . .,
there is a trace in R with triggered events evtR,1,evtR,2, . . . and
evtR;i refines evtA;i .

Definition: Lockfree Refinement
Let R,A be two machines with the same state space S.
R is called a lockfree refinement of A if

1 IR ⊆ IA

2 IR 6= ∅
3 ER;evtR ⊆ EA;evtA for each event
4 dom(EA;evtA) ⊆ dom(ER;evtR) for each event

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 71/96

Loss of behaviour

Every trace for A has a refining trace for R.

More precisely
For every trace in A with triggered events evtA,1,evtA,2, . . .,
there is a trace in R with triggered events evtR,1,evtR,2, . . . and
evtR;i refines evtA;i .

Definition: Lockfree Refinement
Let R,A be two machines with the same state space S.
R is called a lockfree refinement of A if

1 IR ⊆ IA
2 IR 6= ∅

3 ER;evtR ⊆ EA;evtA for each event
4 dom(EA;evtA) ⊆ dom(ER;evtR) for each event

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 71/96

Loss of behaviour

Every trace for A has a refining trace for R.

More precisely
For every trace in A with triggered events evtA,1,evtA,2, . . .,
there is a trace in R with triggered events evtR,1,evtR,2, . . . and
evtR;i refines evtA;i .

Definition: Lockfree Refinement
Let R,A be two machines with the same state space S.
R is called a lockfree refinement of A if

1 IR ⊆ IA
2 IR 6= ∅
3 ER;evtR ⊆ EA;evtA for each event

4 dom(EA;evtA) ⊆ dom(ER;evtR) for each event

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 71/96

Loss of behaviour

Every trace for A has a refining trace for R.

More precisely
For every trace in A with triggered events evtA,1,evtA,2, . . .,
there is a trace in R with triggered events evtR,1,evtR,2, . . . and
evtR;i refines evtA;i .

Definition: Lockfree Refinement
Let R,A be two machines with the same state space S.
R is called a lockfree refinement of A if

1 IR ⊆ IA
2 IR 6= ∅
3 ER;evtR ⊆ EA;evtA for each event
4 dom(EA;evtA) ⊆ dom(ER;evtR) for each event

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 71/96

Coupling

More general notion of refinement
What if abstract machine A and refinement R have different
state spaces SA and SR?

Ü Couple abstract and refined state space.

C ∈ SR ↔ SA Coupling invariant / Gluing invariant

Example

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

C = {r 7�a | a = dom(r)} = {f ,m · (f 7�m) 7�m}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 72/96

Coupling

More general notion of refinement
What if abstract machine A and refinement R have different
state spaces SA and SR?

Ü Couple abstract and refined state space.

C ∈ SR ↔ SA Coupling invariant / Gluing invariant

Example

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

C = {r 7�a | a = dom(r)} = {f ,m · (f 7�m) 7�m}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 72/96

Coupling

More general notion of refinement
What if abstract machine A and refinement R have different
state spaces SA and SR?

Ü Couple abstract and refined state space.

C ∈ SR ↔ SA Coupling invariant / Gluing invariant

Example

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

C = {r 7�a | a = dom(r)} = {f ,m · (f 7�m) 7�m}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 72/96

Coupling

More general notion of refinement
What if abstract machine A and refinement R have different
state spaces SA and SR?

Ü Couple abstract and refined state space.

C ∈ SR ↔ SA Coupling invariant / Gluing invariant

Example

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

C = {r 7�a | a = dom(r)} = {f ,m · (f 7�m) 7�m}
Klebanov, Ulbrich – Applications of Formal Verification SS 2015 72/96

Refinement – Coupling

Sensible to assume C a total relation:

C ∈ SR ←↔ SA

Often, coupling is a total function:

C ∈ SR → SA

Define one abstraction for any detailed state.
BUT sometimes, several possible abstractions per
concrete state sensible.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 73/96

Refinement – Coupled Traces

σ0 σ1 σ2 σ3 σ4
initA evtA1 evtA2 evtA3 evtA4 evtA5

. . .

χ0 χ1 χ2 χ3 χ4
initR evtR1 evtR2 evtR3 evtR4 evtR5

. . .

Refinement: R refines A
For every concrete trace (χ0, χ1, . . .) of R with events
(evtR

1 ,evtR
2 , ...) there exists an abstract trace (σ0, σ1, . . .) with

events (evtA
1 ,evtA

2 , . . .) such that
1 χi 7�σi ∈ C for all i ∈ N
2 evtR

i refines event evtA
i .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 74/96

Refinement – Coupled Traces

σ0 σ1 σ2 σ3 σ4
initA evtA1 evtA2 evtA3 evtA4 evtA5

. . .

χ0 χ1 χ2 χ3 χ4
initR evtR1 evtR2 evtR3 evtR4 evtR5

. . .

C C C C C

Refinement: R refines A
For every concrete trace (χ0, χ1, . . .) of R with events
(evtR

1 ,evtR
2 , ...) there exists an abstract trace (σ0, σ1, . . .) with

events (evtA
1 ,evtA

2 , . . .) such that
1 χi 7�σi ∈ C for all i ∈ N
2 evtR

i refines event evtA
i .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 74/96

Refinement – Coupled Traces

σ0 σ1 σ2 σ3 σ4
initA evtA1 evtA2 evtA3 evtA4 evtA5

. . .

χ0 χ1 χ2 χ3 χ4
initR evtR1 evtR2 evtR3 evtR4 evtR5

. . .

C C C C C

Refinement: R refines A
For every concrete trace (χ0, χ1, . . .) of R with events
(evtR

1 ,evtR
2 , ...) there exists an abstract trace (σ0, σ1, . . .) with

events (evtA
1 ,evtA

2 , . . .) such that

1 χi 7�σi ∈ C for all i ∈ N
2 evtR

i refines event evtA
i .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 74/96

Refinement – Coupled Traces

σ0 σ1 σ2 σ3 σ4
initA evtA1 evtA2 evtA3 evtA4 evtA5

. . .

χ0 χ1 χ2 χ3 χ4
initR evtR1 evtR2 evtR3 evtR4 evtR5

. . .

C C C C C

Refinement: R refines A
For every concrete trace (χ0, χ1, . . .) of R with events
(evtR

1 ,evtR
2 , ...) there exists an abstract trace (σ0, σ1, . . .) with

events (evtA
1 ,evtA

2 , . . .) such that
1 χi 7�σi ∈ C for all i ∈ N

2 evtR
i refines event evtA

i .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 74/96

Refinement – Coupled Traces

σ0 σ1 σ2 σ3 σ4
initA evtA1 evtA2 evtA3 evtA4 evtA5

. . .

χ0 χ1 χ2 χ3 χ4
initR evtR1 evtR2 evtR3 evtR4 evtR5

. . .

C C C C C

Refinement: R refines A
For every concrete trace (χ0, χ1, . . .) of R with events
(evtR

1 ,evtR
2 , ...) there exists an abstract trace (σ0, σ1, . . .) with

events (evtA
1 ,evtA

2 , . . .) such that
1 χi 7�σi ∈ C for all i ∈ N
2 evtR

i refines event evtA
i .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 74/96

Refinement – Definition

Definition: Refinement
Let R,A be two machines with state spaces SR,SA.
Let C ∈ SR ↔ RA be the coupling invariant.
R is called a refinement of A modulo C if

1 IR ⊆ C−1[IA] and
2 ER;evtR ⊆ C ; EA;evtA ; C−1 for each event.

(∀x , y · x 7� y ∈ R−1 ⇔ y 7� x ∈ R, inverse relation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 75/96

Refinement – Definition

Definition: Refinement
Let R,A be two machines with state spaces SR,SA.
Let C ∈ SR ↔ RA be the coupling invariant.
R is called a refinement of A modulo C if

1 IR ⊆ C−1[IA] and

2 ER;evtR ⊆ C ; EA;evtA ; C−1 for each event.

(∀x , y · x 7� y ∈ R−1 ⇔ y 7� x ∈ R, inverse relation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 75/96

Refinement – Definition

Definition: Refinement
Let R,A be two machines with state spaces SR,SA.
Let C ∈ SR ↔ RA be the coupling invariant.
R is called a refinement of A modulo C if

1 IR ⊆ C−1[IA] and
2 ER;evtR ⊆ C ; EA;evtA ; C−1 for each event.

(∀x , y · x 7� y ∈ R−1 ⇔ y 7� x ∈ R, inverse relation)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 75/96

Refinement – Path subsumption

σn σn+1evtA

χn χn+1evtR

C C

⊆

ER;evtR ⊆ C ; EA;evtA ; C−1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 76/96

Refinement – Path subsumption

σn σn+1evtA

χn χn+1evtR

C C

⊆

ER;evtR ⊆ C ; EA;evtA ; C−1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 76/96

Refinement – Path subsumption

σn σn+1evtA

χn χn+1evtR

C C

⊆

ER;evtR ⊆ C ; EA;evtA ; C−1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 76/96

Refinement – Path subsumption

σn σn+1evtA

χn χn+1evtR

C C

⊆

ER;evtR ⊆ C ; EA;evtA ; C−1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 76/96

Refinement – Path subsumption

σn σn+1evtA

χn χn+1evtR

C C

⊆

ER;evtR ⊆ C ; EA;evtA ; C−1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 76/96

Specifying Coupling

The coupling invariant is specified as
part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of
its abstraction.

Example (from slide 72)

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

openFiles =
dom(openModes)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 77/96

Specifying Coupling

The coupling invariant is specified as
part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of
its abstraction.

Example (from slide 72)

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

openFiles =
dom(openModes)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 77/96

Specifying Coupling

The coupling invariant is specified as
part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of
its abstraction.

Example (from slide 72)

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

openFiles =
dom(openModes)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 77/96

Specifying Coupling

The coupling invariant is specified as
part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of
its abstraction.

Example (from slide 72)

MACHINE AbstractFileSys
VARIABLES openFiles
INVARIANTS

openFiles ⊆ FILES

MACHINE RefinedFileSys
VARIABLES openModes
INVARIANTS

openModes ⊆
FILES ×MODES

openFiles =
dom(openModes)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 77/96

Proof Obligation GRD

Proof that event guard in refinement is stronger than in
abstract machine.
=⇒ Abstraction is enabled when refinement is.

Abstract invariants
Concrete invariants
Concrete event guard

=⇒
Abstract event guard

∀varsA, varsR ·

invA(varsA) ∧ invR(varsA, varsR) ∧ grdR(varsR)

⇒ grdA(varsA)

(Version w/o parameters, see literature for full version)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 78/96

Proof Obligation GRD

Proof that event guard in refinement is stronger than in
abstract machine.
=⇒ Abstraction is enabled when refinement is.

Abstract invariants
Concrete invariants
Concrete event guard

=⇒
Abstract event guard

∀varsA, varsR ·

invA(varsA) ∧ invR(varsA, varsR) ∧ grdR(varsR)

⇒ grdA(varsA)

(Version w/o parameters, see literature for full version)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 78/96

Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

=⇒
Abstract before-after-predicate

Rem ER;evtR ⊆ C ; EA;evtA ; C−1

Obs The coupling invariant is only used for the before-state not
for the after-state.

? Why?
! Already proven condition INV implies invariant for

after-state.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 79/96

Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

=⇒
Abstract before-after-predicate

Rem ER;evtR ⊆ C ; EA;evtA ; C−1

Obs The coupling invariant is only used for the before-state not
for the after-state.

? Why?
! Already proven condition INV implies invariant for

after-state.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 79/96

Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

=⇒
Abstract before-after-predicate

Rem ER;evtR ⊆ C ; EA;evtA ; C−1

Obs The coupling invariant is only used for the before-state not
for the after-state.

? Why?
! Already proven condition INV implies invariant for

after-state.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 79/96

Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

=⇒
Abstract before-after-predicate

Rem ER;evtR ⊆ C ; EA;evtA ; C−1

Obs The coupling invariant is only used for the before-state not
for the after-state.

? Why?

! Already proven condition INV implies invariant for
after-state.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 79/96

Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

=⇒
Abstract before-after-predicate

Rem ER;evtR ⊆ C ; EA;evtA ; C−1

Obs The coupling invariant is only used for the before-state not
for the after-state.

? Why?
! Already proven condition INV implies invariant for

after-state.
Klebanov, Ulbrich – Applications of Formal Verification SS 2015 79/96

Event-B has more ...

Things not covered in these slides:

Witnesses for parameters dropped in refinements

Termination issues (variants)

Extended/Not extended events

Event merging

Sequential refinement

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 80/96

Event-B has more ...

Things not covered in these slides:

Witnesses for parameters dropped in refinements

Termination issues (variants)

Extended/Not extended events

Event merging

Sequential refinement

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 80/96

Event-B has more ...

Things not covered in these slides:

Witnesses for parameters dropped in refinements

Termination issues (variants)

Extended/Not extended events

Event merging

Sequential refinement

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 80/96

Event-B has more ...

Things not covered in these slides:

Witnesses for parameters dropped in refinements

Termination issues (variants)

Extended/Not extended events

Event merging

Sequential refinement

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 80/96

Event-B has more ...

Things not covered in these slides:

Witnesses for parameters dropped in refinements

Termination issues (variants)

Extended/Not extended events

Event merging

Sequential refinement

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 80/96

Event-B has more ...

Things not covered in these slides:

Witnesses for parameters dropped in refinements

Termination issues (variants)

Extended/Not extended events

Event merging

Sequential refinement

. . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 80/96

Byzantine Agreement –
A case study verified with Event-B

Based on:
Roman Krenický and Mattias Ulbrich. Deductive Verification of a Byzantine
Agreement Protocol. Technical report (2010-7). Karlsruhe Institute of
Technology, Department of Informatics, 2010

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 81/96

Byzantine Generals

“When shall we attack?”

agree on a
time even in the
presence of traitors

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 82/96

Byzantine Generals

“When shall we attack?”

agree on a
time even in the
presence of traitors

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 82/96

Byzantine Generals

“When shall we attack?”

agree on a
time even in the
presence of traitors

messages

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 82/96

Byzantine Generals

“When shall we attack?”

agree on a
time even in the
presence of traitors

messages

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 82/96

Application in Avionics

“Which components
are operative?”

C2

C1

C2

C3

C4

agree on the set
of operative components
even in the presence of
faulty components

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 83/96

Application in Avionics

“Which components
are operative?”

C2

C1

C2

C3

C4

agree on the set
of operative components
even in the presence of
faulty components

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 83/96

Application in Avionics

“Which components
are operative?”

C2

C1

C2

C3

C4

agree on the set
of operative components
even in the presence of
faulty components

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 83/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

1

1

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

1

1

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Explanation by Example

C1

C2

C3

C4

1

2

3

1

2

3

1

11

2,1

3,1

2
2

3

3

1,3,2

2,1,3

3,1,2

CONSENSUS!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 84/96

Example Run 2

C1

C2

C3

C4

1

X

X

Round 0

1

1

X
1

Round 1
1

1

Round 2

1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 85/96

Example Run 2

C1

C2

C3

C4

1

X

X

Round 0

1

1

X
1

Round 1
1

1

Round 2

1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 85/96

Example Run 2

C1

C2

C3

C4

1

X

X

Round 0

1

1

X
1

Round 1
1

1

Round 2

1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 85/96

Example Run 2

C1

C2

C3

C4

1

X

X

Round 0

1

1

X
1

Round 1

1

1

Round 2

1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 85/96

Byzantine Agreement Algorithm

Verification Goals:

Validity If the transmitter tt is non-faulty, then all non-faulty
receivers agree on the value sent by tt .

Agreement Any two non-faulty receivers agree on the value
assigned to tt .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 86/96

Byzantine Agreement Algorithm

Round 0: Transmitter sends signed message to all receivers.

Round n: Component receive messages, verify signatures,
sign messages and pass them on.

GOAL: Prove that this algorithm has the “validity” and
“agreement” properties.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 87/96

Byzantine Agreement Algorithm

Round 0: Transmitter sends signed message to all receivers.

Round n: Component receive messages, verify signatures,
sign messages and pass them on.

GOAL: Prove that this algorithm has the “validity” and
“agreement” properties.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 87/96

Byzantine Agreement Algorithm

Round 0: Transmitter sends signed message to all receivers.

Round n: Component receive messages, verify signatures,
sign messages and pass them on.

GOAL: Prove that this algorithm has the “validity” and
“agreement” properties.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 87/96

Verification

Quote
We know of no area in computer science
or mathematics in which informal
reasoning is more likely to lead to errors
than in the study of this type of algorithm.

Taken from: The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, and Marshall Pease
ACM Transactions on Programming Languages and Systems
Volume 4, pp. 383–401,1982.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 88/96

Context for Byzantine Agreement

CONTEXT Context
SETS

MODULE

VALUE

CONSTANTS

faulty , transmitter ,V0

AXIOMS

faulty ⊆ MODULE

transmitter ∈ MODULE

V0 ∈ VALUE

finite(faulty)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 89/96

Context for Byzantine Agreement

CONTEXT Context
SETS

MODULE

VALUE

CONSTANTS

faulty , transmitter ,V0

AXIOMS

faulty ⊆ MODULE

transmitter ∈ MODULE

V0 ∈ VALUE

finite(faulty)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 89/96

Context for Byzantine Agreement

CONTEXT Context
SETS

MODULE

VALUE

CONSTANTS
faulty , transmitter ,V0

AXIOMS

faulty ⊆ MODULE

transmitter ∈ MODULE

V0 ∈ VALUE

finite(faulty)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 89/96

Context for Byzantine Agreement

CONTEXT Context
SETS

MODULE

VALUE

CONSTANTS
faulty , transmitter ,V0

AXIOMS
faulty ⊆ MODULE

transmitter ∈ MODULE

V0 ∈ VALUE

finite(faulty)
END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 89/96

First machine

MACHINE Messages
SEES Context

VARIABLES

INVARIANTS

ty mess : messages ⊆ MODULE ×MODULE × VALUE

ty round : round ∈ N
ty collected : collected ∈ MODULE → P(VALUE)

. . .

messages messages being sent in the current round
round the number of the current round

collected values observed in previous rounds

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 90/96

First machine

MACHINE Messages
SEES Context

VARIABLES messages, round , collected

INVARIANTS

ty mess : messages ⊆ MODULE ×MODULE × VALUE

ty round : round ∈ N
ty collected : collected ∈ MODULE → P(VALUE)

. . .

messages messages being sent in the current round
round the number of the current round

collected values observed in previous rounds

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 90/96

First machine

MACHINE Messages
SEES Context

VARIABLES messages, round , collected

INVARIANTS
ty mess : messages ⊆ MODULE ×MODULE × VALUE

ty round : round ∈ N
ty collected : collected ∈ MODULE → P(VALUE)

. . .

messages messages being sent in the current round

round the number of the current round
collected values observed in previous rounds

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 90/96

First machine

MACHINE Messages
SEES Context

VARIABLES messages, round , collected

INVARIANTS
ty mess : messages ⊆ MODULE ×MODULE × VALUE

ty round : round ∈ N

ty collected : collected ∈ MODULE → P(VALUE)

. . .

messages messages being sent in the current round
round the number of the current round

collected values observed in previous rounds

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 90/96

First machine

MACHINE Messages
SEES Context

VARIABLES messages, round , collected

INVARIANTS
ty mess : messages ⊆ MODULE ×MODULE × VALUE

ty round : round ∈ N
ty collected : collected ∈ MODULE → P(VALUE)

. . .

messages messages being sent in the current round
round the number of the current round

collected values observed in previous rounds

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 90/96

First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂

act1 : round := round + 1
act2 : messages :∈ P(MODULE

\ {transmitter}

× MODULE × VALUE)
act3 : collected := λm · collected(m) ∪

{v | (s,m, v) ∈ messages}

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 91/96

First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂

act1 : round := round + 1
act2 : messages :∈ P(MODULE

\ {transmitter}

× MODULE × VALUE)
act3 : collected := λm · collected(m) ∪

{v | (s,m, v) ∈ messages}

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 91/96

First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂
act1 : round := round + 1

act2 : messages :∈ P(MODULE

\ {transmitter}

× MODULE × VALUE)
act3 : collected := λm · collected(m) ∪

{v | (s,m, v) ∈ messages}

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 91/96

First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂
act1 : round := round + 1
act2 : messages :∈ P(MODULE

\ {transmitter}

× MODULE × VALUE)

act3 : collected := λm · collected(m) ∪

{v | (s,m, v) ∈ messages}

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 91/96

First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂
act1 : round := round + 1
act2 : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)

act3 : collected := λm · collected(m) ∪

{v | (s,m, v) ∈ messages}

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 91/96

First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂
act1 : round := round + 1
act2 : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)
act3 : collected := λm · collected(m) ∪

{v | (s,m, v) ∈ messages}

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 91/96

First machine (2)

messages messages being sent in the current round

round the number of the current round

collected values observed in previous rounds

MACHINE Messages SEES Context

VARIABLES messages, round , collected

INVARIANTS...

EVENTS

Initialisation =̂ ...

EVENT ROUND =̂
act1 : round := round + 1
act2 : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)
act3 : collected := λm · collected(m) ∪ {v | (s,m, v) ∈ messages}

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 91/96

First refinement: signed messages

All messages are signed in a trustworthy manner:
No forgery possible =⇒ Consider only relayed messages.

round k : s r
v

round k + 1: r n
v

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 92/96

First refinement: signed messages

All messages are signed in a trustworthy manner:
No forgery possible =⇒ Consider only relayed messages.

round k : s r
v

round k + 1: r n
v

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 92/96

First refinement: signed messages

All messages are signed in a trustworthy manner:
No forgery possible =⇒ Consider only relayed messages.

round k : s r
v

round k + 1: r n
v

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 92/96

Signed messages (2)

round k : s r
v

round k + 1: r n
v

MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected

INVARIANTS

val1:∀s, r , v · (s, r , v) ∈ messages ⇒ v ∈ collected(transmitter)
val2: ∀n · collected(n) ⊆ collected(transmitter)

EVENTS

EVENTROUND REFINES ROUND =̂
act1, act3 as above

act2: messages :∈ P
({

(r , n, v) | (s, r , v) ∈ messages
})

was : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 93/96

Signed messages (2)

round k : s r
v

round k + 1: r n
v

MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected

INVARIANTS

val1:∀s, r , v · (s, r , v) ∈ messages ⇒ v ∈ collected(transmitter)
val2: ∀n · collected(n) ⊆ collected(transmitter)

EVENTS

EVENTROUND REFINES ROUND =̂
act1, act3 as above

act2: messages :∈ P
({

(r , n, v) | (s, r , v) ∈ messages
})

was : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 93/96

Signed messages (2)

round k : s r
v

round k + 1: r n
v

MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected

INVARIANTS

val1:∀s, r , v · (s, r , v) ∈ messages ⇒ v ∈ collected(transmitter)
val2: ∀n · collected(n) ⊆ collected(transmitter)

EVENTS

EVENTROUND REFINES ROUND =̂
act1, act3 as above

act2: messages :∈ P
({

(r , n, v) | (s, r , v) ∈ messages
})

was : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)
END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 93/96

Signed messages (2)

round k : s r
v

round k + 1: r n
v

MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected

INVARIANTS

val1:∀s, r , v · (s, r , v) ∈ messages ⇒ v ∈ collected(transmitter)
val2: ∀n · collected(n) ⊆ collected(transmitter)

EVENTS

EVENTROUND REFINES ROUND =̂
act1, act3 as above
act2: messages :∈ P

({
(r , n, v) | (s, r , v) ∈ messages

})
was : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 93/96

Signed messages (2)

round k : s r
v

round k + 1: r n
v

MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected

INVARIANTS
val1:∀s, r , v · (s, r , v) ∈ messages ⇒ v ∈ collected(transmitter)

val2: ∀n · collected(n) ⊆ collected(transmitter)

EVENTS

EVENTROUND REFINES ROUND =̂
act1, act3 as above
act2: messages :∈ P

({
(r , n, v) | (s, r , v) ∈ messages

})
was : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 93/96

Signed messages (2)

round k : s r
v

round k + 1: r n
v

MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected

INVARIANTS
val1:∀s, r , v · (s, r , v) ∈ messages ⇒ v ∈ collected(transmitter)
val2: ∀n · collected(n) ⊆ collected(transmitter)

EVENTS

EVENTROUND REFINES ROUND =̂
act1, act3 as above
act2: messages :∈ P

({
(r , n, v) | (s, r , v) ∈ messages

})
was : messages :∈ P(MODULE \ {transmitter} × MODULE × VALUE)

END

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 93/96

Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 94/96

Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 94/96

Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

Changes message representation:
msgs ⊆ MODULE×MODULE×P(MODULE)×VALUE

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 94/96

Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

non-faulty modules behave well:

r 6∈ faulty ∧ (s, r , h, v) ∈ msgs =⇒
∀n ·

(
n 6∈ h =⇒ (r , n, h ∪ {r}, v) ∈ msgs′

)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 94/96

Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

hybrid fault model:

faulty = arbFault ∪ symFaulty

arbFaulty ∩ symFaulty = ∅

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 94/96

Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

new event structure:

PROCESS EVENT refines SKIP

modifies internal data structures (invisible to abstract
machine) and

ROUND SWITCH refines ROUND

reproduces the effect of a round change from the in-
ternal data.

An implementation would refine PROCESS EVENT.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 94/96

Refinement Tower

covered so far

sees

sees

sees

sees

def. ext.

def. ext.

def. ext.

MessagesContext

MessagesSigned

History

Guarantees

GuaranteesTechHybridGuaranteesHybridContext

HybridGuaranteesTechRoundless

SM

VotingContext ValueTables

ValueTablesTechZAModuleList

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 94/96

Agreement!

In machine Guarantees:

round ≥ card(faulty) + 1 =⇒(
∀n,m·n /∈ faulty ∧m /∈ faulty ⇒

collected(n) = collected(m)
)

In machine HybridGuarantees:

round ≥ card(arbFaulty) + 1 =⇒(
∀n,m·n /∈ faulty ∧m /∈ faulty ⇒

collected(n) = collected(m)
)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 95/96

Agreement!

In machine Guarantees:

round ≥ card(faulty) + 1 =⇒(
∀n,m·n /∈ faulty ∧m /∈ faulty ⇒

collected(n) = collected(m)
)

In machine HybridGuarantees:

round ≥ card(arbFaulty) + 1 =⇒(
∀n,m·n /∈ faulty ∧m /∈ faulty ⇒

collected(n) = collected(m)
)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 95/96

Verification Effort

Numbers
Size: 4 contexts, 12 machines, 106 invariants
Labour: approx. 4 person months
Proofs: 322 proof obligations
Automation: 74/322, 23%

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 96/96

	Formal Software Design: Modelling in Event-B

