
System Description: leanK 2.0

Bernhard Beckert1 Rajeev Goré2,⋆

1 University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,
D-76128 Karlsruhe, Germany. E-mail: beckert@ira.uka.de

2 Automated Reasoning Project and Department of Computer Science,
Australian National University,

Canberra, ACT, 0200, Australia. E-mail: rpg@arp.anu.edu.au

Abstract. leanK is a “lean”, i.e., extremely compact, Prolog implemen-
tation of a free variable tableau calculus for propositional modal logics.
leanK 2.0 includes additional search space restrictions and fairness strate-
gies, giving a decision procedure for the logics K, KT, and S4.

Overview. leanK is a “lean” Prolog implementation of the free variable tableau
calculus for propositional modal logics reported in [1]. It performs depth first
search and is based upon leanTAP [2]. Formulae are annotated with labels con-
taining variables, which capture the universal and existential nature of the box
and diamond modalities, respectively. leanK 2.0 includes additional search space
restrictions and fairness strategies, giving a decision procedure for the logics K,
KT, and S4. It has 87, 51, and 132 lines of code for K, KD, and S4, respectively.

The main advantages of leanK are its modularity and its versatility. Due to
its small size, leanK is easier to understand than a complex prover, and hence
easier to adapt to special needs. Minimal changes in the rules give provers for
all the 15 basic normal modal logics. By sacrificing modularity we can obtain
specialised (faster) provers for particular logics like K45D, G and Grz. It is
easy to obtain an explicit counter-example from a failed proof attempt. The
leanK (2.0) SICStus Prolog 3 code is at: http://i12www.ira.uka.de/modlean.

The Calculus. We describe leanK (2.0) in some detail since [1] does not contain
the new search space restrictions and fairness strategies.

To reduce the number of tableau rules, we assume all formulae are in negation
normal form (NNF). An NNF transformation comes with the leanK source code.

To test a formula A for theoremhood in logic L, leanK tests whether the for-
mula B = NNF(¬A) is L-unsatisfiable. The initial (single node) tableau contains
the labelled formula 1 :B. leanK repeatedly applies the tableau expansion and
closure rules until (a) a closed tableau is constructed (whence B is unsatisfiable
and A is a theorem) or (b) no further rule applications are possible (whence B is
L-satisfiable and A is not a theorem). The following features distinguish leanK’s
calculus from other labelled modal tableau calculi (see [4] for an overview):

⋆ Supported by the Australian Research Council via a Queen Elizabeth II Fellowship.



Free variables in labels: Applying the traditional box-rule requires guessing the
correct eigenvariables. Using (free) variables in labels as “wildcards” that
get instantiated “on demand” during branch closure allows more intelligent
choices of these eigenvariables. To preserve soundness for worlds with no
successors, variable positions in labels can be “conditional” (i.e., a formula
labelled with a conditional label σ has only to be satisfied by a model if
the world corresponding to σ exists in that model). Similar ideas have been
explored in [6] and [5] using unification of labels, rather than just matching
(as in our calculus), and also using an analytic cut rule.

Universal variables: Under certain conditions, a variable x in a label is “univer-
sal” in that an instantiation of x on one branch need not affect the value of x

on other branches, thereby localising the effects of a variable instantiation to
one branch. The technique entails creating and instantiating local duplicates
of labelled formulae instead of the originals.

Finite diamond-rule: Applying the diamond-rule to 3A usually creates a new

label. By using instead (a Gödelisation of) the formula A itself as the la-
bel, we guarantee that only a finite number of different labels (of a certain
length) are used in the proof. In particular, different (identically labelled)
occurrences of 3A generate the same unique label.

The intuitive reading of a labelled tableau formula σ : A (where σ is a label
and A is a modal formula in NNF) is “the possible world σ satisfies the for-
mula A”. Thus, 1 :2p says that the possible world 1 satisfies the formula 2p.
Our box-rule then reduces the formula 1 :2p to the labelled formula 1.(x) : p,
which contains the universal variable x in its label and has an intuitive reading
“the possible world 1.(x) satisfies the formula p”. Since different instantiations
of x give different labels, the labelled formula 1.(x) : p effectively says that “all
successors of the possible world 1 satisfy p”, thereby capturing the usual Kripke
semantics for 2p (almost) exactly. But, in a non-serial logic, the possible world 1
may have no successor worlds; so, in such logics, we read σ : A as “for all instan-
tiations of the variables in σ, if the world corresponding to that instantiation
of σ exists then the world satisfies the formula A”. Our rule for disjunctions
retains free variables in the labels of the two disjuncts, but because 2 does not
distribute over ∨, such variables then lose their “universal” force. These “rigid”
variables can be instantiated only once in a tableau proof. When the disjunctive
rule makes universal variables rigid, additional copies of the box-formula that
generated the original variables are needed. However, these additional copies are
not generated by the box-rule, but by the disjunctive rule itself. In the formulae
resulting from expansion rule applications, universal variables are renamed so
each universal variable occurs in only one formula in a tableau.

All of leanK’s tableau expansion rules are invertible: some denominator (con-
clusion) of each rule is satisfiable iff the numerator (the premiss) is satisfiable.
Thus, unlike traditional modal tableau methods [3, 4], the order of rule applica-
tion is immaterial. The rules for expanding a branch can be found in [1].

The calculi for different logics differ mainly in the box-rule, with different
denominators for different logics (see [1]). In addition, a simpler version of the



closure rule can be used if the logic is serial. Since each rule corresponds to a
separate Prolog clause, replacing one clause with another implements a different
logic. The clauses for some logics require additional arguments so minor editing
is also required to ensure all clauses contain the same number of arguments. If
labels contain free variables, detecting closure in non-serial logics is non-trivial
because the labels of apparently complementary literals may be conditional. The
(apparently contradictory) pair 1.(1) : p and 1.(1) :¬p is not necessarily inconsis-
tent since the world represented by 1.(1) may not exist in the chosen model. We
therefore have to ensure that this world exists in all interpretations satisfying the
tableau branch B, before closing B. This knowledge can be deduced from other
formulae on B. Thus in our example, a formula like 1.1 : A on B would “justify”
the use of the literal pair 1.(1) : p and 1.(1) :¬p for closing the branch B. The
crucial point is that the label 1.1 is unconditional exactly in the conditional posi-
tion of 1.(1). In that case, we say that the label 1.(1) is justified on the branch B

(for a formal definition see [1]).

The Fair Proof Procedure. The calculus described above is sound. Using a
fair proof search procedure it is also complete. leanK uses a fairness strategy
for closing branches so backtracking over different choices of complementary
literals on a tableau branch and the closing substitutions associated with them
is unnecessary. For that purpose, each tableau formula φ has an attached list of
all instantiations of the rigid variables in φ that have previously been applied to
copies of φ occurring on the same branch. Closure on a pair of complementary
literals on a branch is forbidden if the associated closing substitution would lead
to a previous instantiation of the free variables. Furthermore, to avoid generating
useless renamings of disjunctive formulae, leanK uses the following restriction:
when the disjunctive rule is applied to a formula φ = σ : A ∨ B, the renamings
of φ that are added to the new sub-branches are “put asleep”. The disjunctive
rule is not applied to these renamings until they are woken up, which is only
allowed if at least one of the free variables in σ has been instantiated using (a
descendant of) σ : A (resp. σ : B) for closure.

The next branch for expansion and the next formula to which a tableau
rule is applied are chosen using the following fair procedure: always choose the
left-most open branch, and view the formulae on any particular branch as a
queue. The first formula in the branch/queue is removed and is used as the
numerator to update the tableau as follows (a disjunctive rule is only used if
it is not asleep): If the chosen formula is not a literal then some (one) rule is
applicable to it, and the formulae created by that rule application are added to
the queue. To preserve fairness, if (the traditional part of) the created formula is
more complex than the numerator, this new formula is added to the end of the
queue, otherwise it is added to the front of the queue. In particular, renamings
of disjunctive formulae added by the disjunctive rule, and the transitive part of
the denominator of the box-rule are added to the end. If the queue is empty,
the first sleeping disjunctive formula that can be woken up is used; if there are
none, the proof search terminates.



This procedure is a semi-decision procedure for all basic modal logics and,
due to the finite diamond-rule, a decision procedure for the non-transitive logics.

To ensure that proof search terminates in case the logic is transitive, leanK 2.0
employs additional search space restrictions to avoid loops: (1) A box-formula
may only be used to expand a branch B if its label is justified on B. (2) A
diamond-formula σ : 3A may only be used to expand a branch B if it is not

“blocked” by a formula σ′ : 3A that already has been used to expand B where
σ′ ≤ σ (i.e., σ′ is an initial prefix of σ) up to instantiation of universal variables—
except if σ : 3A is unblocked “behind” σ′ by a new box-formula τ : 2B (σ′ ≤ τ

and τ ≤ σ). A formula τ : 2B is new if, at the time it is used to expand the
branch, there is no formula τ ′ : 2B that already has been used to expand B

(where τ ′ ≤ τ ). Intuitively, a diamond-formula 3A may not be used for expan-
sion in a world w if we have already seen it in a world w′ that is a predecessor
of w, except if we have seen a new box formula in a world w′′ that is on the path
from w′ to w. Now, if the logic is transitive, the next formula to which a tableau
rule is applied is chosen from the branch/queue in the following order: (1) the
first formula that is a literal, a conjunctive formula, or a disjunctive formula
that is not asleep, (2) the first diamond-formula that is not blocked, (3) the first
disjunctive formula that can be woken up, (4) the first box-formula whose label
is justified; if none of these choices is possible, the proof search terminates.

Performance. The strength of leanK (2.0) clearly is its small size and adapt-
ability and not its performance. The following table shows statistics for a set
of 72 K-theorems kindly provided by A. Heuerding. These formulae are non-
trivial; No. 55, has about 90 logical operators. leanK 2.0 could prove 58 of these
theorems. The program was terminated if no proof had been found after 15sec.
The table shows the number of branches that were closed, and the proof time
(running under SICStus Prolog 3 on a SUN Ultra 1 workstation).

No. 24 44 46 50 52 55 56 67 72

Vers. Branches 22251 90 137 43 56 1011 68 26565 154
1.0 Time [msec] 4400 50 80 20 30 1000 30 9520 90

Vers. Branches – 6 46 27 15 5 42 – –
2.0 Time [msec] – 20 20 20 10 0 20 – –

References

1. B. Beckert and R. Goré. Free variable tableaux for propositional modal logics. In
Proceedings, TABLEAUX-97, LNCS 1227, pages 91–106. Springer, 1997.

2. B. Beckert and J. Posegga. leanTAP : Lean tableau-based deduction. Journal of

Automated Reasoning, 15(3):339–358, 1995.
3. M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Syn-

these Library. D. Reidel, Dordrecht, Holland, 1983.
4. R. Goré. Tableau methods for modal and temporal logics. In Handbook of Tableau

Methods, Kluwer, Dordrecht, 1998. To appear.
5. G. Governatori. Labelled tableaux for multi-modal logics. In Proceedings,

TABLEAUX-95, LNCS 918, pages 79–94. Springer, 1995.
6. J. Pitt and J. Cunningham. Distributed modal theorem proving with KE. In

Proceedings, TABLEAUX-96, LNAI 1071, pages 160–176. Springer, 1996.


