A Dynamic Logic for Java Card

Bernhard Beckert

University of Karlsruhe
Institute for Logic, Complexity and Deduction Systems
D-76128 Karlsruhe, Germany
112www.ira.uka.de/~beckert

Abstract. In this paper, I describe a Dynamic Logic for JAVA CARD and outline a sequent calculus for this logic that axiomatises JAVA CARD. The purpose of the logic is to provide a framework for software verification that can be integrated into real-world software development processes.

1 Introduction

Design principles and goals. The work that is reported in this paper has been carried out as part of the KeY project [1]. The goal of KeY is to enhance a commercial CASE tool with functionality for formal specification and deductive verification and, thus, to integrate formal methods into real-world software development processes. Accordingly, the design principles for the software verification component of the KeY system are:

The programs that are verified should be written in a “real” object-oriented programming language.

The logical formalism should be as easy as possible to use for software developers and programmers (that do not have years of training in formal methods).

Java Card. We use JAVA CARD [13,6] (soon to be replaced by Java 2 Micro Edition, J2ME) as the target programming language. JAVA CARD is a “real” object-oriented language and has, accordingly, features that are difficult to handle such as dynamic data structures, exceptions, and initialisation; but it lacks some crucial complications of the full JAVA language such as threads and dynamic loading of classes. JAVA smart cards are an extremely suitable application for software verification:

JAVA CARD applications are small (JAVA smart cards currently offer 16K memory for code); at the same time, JAVA CARD applications are embedded into larger program systems or business processes which should be modeled (though not necessarily formally verified); JAVA CARD applications are often security-critical, giving incentive to apply formal methods; the high number of deployed smart cards constitutes a new motivation for formal verification, as arbitrary updates are not feasible.

Dynamic Logic. We use Dynamic Logic (DL) [7], which is an extension of Hoare logic [3], as the logical basis of the KeY system’s software verification component. We believe that this is a good choice because deduction in DL is based on symbolic program execution and simple program transformations and is, thus, close to a programmer’s understanding of JAVA CARD.

DL has been successfully used in the KIV software verification system [12] for a programming language that is not object-oriented; and Poetzsche-Heffler and Mueller’s definition of a Hoare logic for a JAVA subset [11] shows that there are no principal obstacles to adapt the DL/Hoare approach to typed object-oriented languages.

DL can be seen as a modal predicate logic with a modality (p) for every program p (we allow p to be any legal JAVA CARD program); (p) refers to the successor worlds (called states in the
DL framework) that are reachable by running the program \(p \). In classical DL there can be several such states (worlds) because the programs can be non-deterministic; but here, since JAVA Card programs are deterministic, there is exactly one such world if \(p \) terminates or there is no such world if \(p \) does not terminate. The formula \(\langle \phi \rangle p \) expresses that the program \(p \) terminates in a state in which \(\phi \) holds. A formula \(\phi \rightarrow \langle \psi \rangle p \) is valid if for every state \(s \) satisfying precondition \(\phi \) a run of the program \(p \) starting in \(s \) terminates, and in the terminating state the postcondition \(\psi \) holds.

Thus, the formula \(\phi \rightarrow \langle \psi \rangle p \) is similar to the Hoare triple \(\{ \phi \} p \{ \psi \} \). But in contrast to Hoare logic, the set of formulas of DL is closed under the usual logical operators: In Hoare logic, the formulas \(\phi \) and \(\psi \) are pure first-order formulas, whereas in DL they can contain programs. DL allows to involve programs in the descriptions \(\phi \) resp. \(\psi \) of states. For example, using a program, it is easy to specify that a data structure is not cyclic, which is impossible in pure first-order logic. Also, JAVA constructs such as instanceof are available in DL for the description of states. It is, therefore, not necessary to define an abstract data type state and to represent states as terms of that type (as has, for example been done in [11]); instead DL formulas can be used to give a (partial) description of states, which is a more flexible technique and allows to concentrate on the relevant properties of a state.

In comparison to classical DL (that uses a simple “artificial” programming language), a DL for a “real” object-oriented programming language like JAVA Card has to cope with the following complications:

A program state does not only depend on the value of program variables but also on the values of the attributes of all existing objects.

The evaluation of a JAVA expression may have side effects; thus, there is a difference between an expression and a logical term.

Language features such as built-in data types, exception handling, and object initialisation have to be handled.

2 Syntax of Java Card DL

The non-dynamic part of our DL is basically a typed first-order predicate logic. To define its syntax, we have to specify its sets of variables, its types, and its terms (which we often call “logical terms” in the following to emphasise that they are different from JAVA expressions). Then, we define what the programs of the DL are. In the programs that are part of a DL formula, we allow an extension of JAVA Card, where logical terms may occur in place of expressions of the same type. Finally, the syntax of DL formulas and sequents is defined.

Context. We do not allow class definitions in the programs that are part of DL formulas, but define syntax and semantics of DL formulas w.r.t. a given JAVA Card program (the context), i.e., a sequence of class definitions. With the following restrictions any syntactically legal JAVA Card program may be used: A context must not contain occurrences of local inner classes; and break and continue must be used with (explicit) labels. These restrictions are “harmless” because any JAVA Card program can easily be transformed accordingly.

We assume that the following methods and fields are implicitly defined for each class \(Cts \) in the context and can accordingly be used in DL formulas (but not in the context). They allow to access information about the program state that is otherwise inaccessible in JAVA: a list of all existing objects of a class and information on whether a class resp. its objects are initialised. The objects of a certain class are considered to be organised into an infinite ordered list; this list is used by new to “create” objects (intuitively, new changes the attributes lastCreatedObj of the class and sets the attribute created of the new object to true, see Section 4).

```java
public static Cts firstObj; // the first object in the list.
// whether already created or not
public static Cts lastCreatedObj; // the last created object,
// null if no object exists
```
public Cts prevObj; // the previous object in the list,
 // null if for the first object
public Cts nextObj; // the next object in the list
public boolean beforeObj(Cts obj); // returns true if this
 // is before obj in the list
public boolean created; // true if the object has already been
 // created with new, and false otherwise
public static boolean classInitialised; // true if the class is initialised
public boolean objInitialised; // true if the object is initialised

Variables. In classical DL there is only one type of variables. Here however, to avoid confusion, we here use two kinds of variables:

Program variables are denoted with \(x, y, z, \ldots \). Their value can differ from state to state and can be changed by programs. Program variables cannot be quantified and they cannot be instantiated with terms.

Logical variables are denoted with \(x, y, z, \ldots \). They are assigned the same values in all states; a statement such as \(x = 1 \);, which tries to change the value of the logical variable \(x \), is illegal. Logical variables must be bound by a quantifier. Free occurrences are not allowed; they can be instantiated with terms (preserving syntactical correctness of a formula but not necessarily its satisfiability or validity).

Types. The set of types of our DL contains for (a) each primitive type of `JAVA CARD` (`boolean, byte, short`), (b) each class defined in the context, and (c) each built-in class such as String: (1) the primitive type itself resp. the type of objects of the class, (2) a pointer type, (3) an array type, and (4) a pointer to array type. In addition, there are user-defined types; typically these are abstract data types (ADTs). There is no type hierarchy, i.e., no subtyping concept.

Terms. Logical terms are constructed as usual from program variables, logical variables, and the constant and function symbols of all types. The set of terms includes in particular all `JAVA CARD` literals for the primitive types, string literals, and the null reference.

In addition, (1) if \(o \) is a term of class type \(C \) (i.e., denotes an object) and \(a \) is a field (attribute) of class \(C \), then \(o.a \) is a term. (2) If \(\texttt{Class} \) is a class name and \(a \) is a static field of \(\texttt{Class} \), then \(\texttt{Class} . a \) is a term. (3) If \(a \) is an array type term and \(i \) is a term of type byte, then \(a[i] \) is a term.

The special postfix operator \(\dagger \) can be applied to all terms of pointer type; it allows to “dereference” a pointer and access the object it points to.

Programs. The programs in DL formulas are executable code; as said above, they are not allowed to contain class declarations. The (basic) programs are the legal `JAVA CARD` statements, including: (1) expression statements such as \(x = 1; \); (assignments), \(m(1); \) (method calls), \(i++; \), "new Cts;", local variable declarations (which restrict the “visibility” of program variables); (2) blocks and compound statements built with \texttt{if-else}, \texttt{switch}, \texttt{while}, \texttt{do-while}, and \texttt{for}; (3) statements with exception handling using \texttt{try-catch-finally}; (4) statements that abruptly redirect the control flow (\texttt{throw}, \texttt{return}, \texttt{break}, \texttt{continue}); (5) labelled statements; (6) the empty statement.

The technique for handling method calls in a DL calculus is to syntactically replace the call by the method’s implementation. To handle the \texttt{return} statement in the right way, it is necessary to record the program variable or attribute that the result is to be bound to and to mark the boundaries of the implementation when it is substituted for the method call. For that purpose, statements of the form \texttt{call}(z=m(arg1, \ldots, argn))\{prog\} can be used in DL programs.

In addition, we allow programs in DL formulas (not in the context) to contain logical terms. Wherever a `JAVA CARD` expression can be used, a term of the same type as the expression can be used as well. Accordingly, expressions can contain terms (but not vice versa).
Formulas. Formulas are built as usual from the (logical) terms, the predicate symbols of all the types and the equality predicate \(\approx\), the logical connectives \(\land, \lor, \rightarrow\), the quantifiers \(\forall, \exists\) (that can be applied to logical variables but not to program variables), and the modal operator \(\langle p \rangle\), i.e., if \(p\) is a program and \(\phi\) is a formula, then \(\langle p \rangle \phi\) is a formula as well.

If \(o\) is a variable of some class type \(C\), then a quantification such as \((\forall o) \phi(o)\) ranges over the (infinite) set of all objects of type \(C\) whether they have been created or not. The fact that all \textit{created} objects of class \(C\) have a certain property \(\phi\) can be expressed using the formula \((\forall o) (o . \text{created} = \text{true} \rightarrow \phi(o))\).

To simplify notation, we allow \textit{updates} of the form \(\{ x \leftarrow t \}\) resp. \(\{ o . a \leftarrow t \}\) to be attached to terms and formulas, where \(x\) is a program variable, \(a\) is a term denoting an object with attribute \(a\), and \(t\) is a term. The intuitive meaning of an update is that the term or formula that it is attached to is to be evaluated after changing the state accordingly, i.e., \(\phi(x \leftarrow t)\) has the same semantics as \(\{x=t\}\).

Sequents. A sequent is of the form \(\phi_1, \ldots, \phi_m \vdash \psi_1, \ldots, \psi_n\) \((m, n \geq 0)\), where the \(\phi_i\) and \(\psi_j\) are DL formulas. The meaning of a sequent is that the conjunction of the \(\phi_i\)'s implies the disjunction of the \(\psi_j\)'s.

3 Semantics of Java Card DL

To define the semantics of JAVA CARD DL we use the semantics of the JAVA CARD programming language. In case of doubt, we refer to the precise formal semantics of JAVA defined by Böger and Schulze [5] using Abstract State Machines.

The models of DL are Kripke structures consisting of possible worlds that are called states. All states of a model share the same universe containing an infinite number of elements of each type.

The function and predicate symbols that are not user-defined such as the equality predicate, the de-referencing operator \(\uparrow\), and the function symbols of the primitive JAVA CARD types have a fixed interpretation. In all models they are interpreted according to their intended semantics resp. their meaning in the JAVA CARD language.

Logical variables are interpreted using a (global) variable assignment; they have the same value in all states of a model.

States. In each state a (possibly different) value (an element of the universe) of the appropriate type is assigned to: (1) the program variables, (2) the attributes (fields) of all objects, (3) the class attributes (static fields) of all classes in the context, and (4) the special reference \texttt{this}. Variables and attributes of pointer types can be assigned the special value \texttt{null}.

In addition, the pointer elements in the universe which are used to interpret program variables and attributes with pointer types are assigned an object element of the appropriate type. Since this assignment can be changed with JAVA CARD statements, it is part of the states (and can differ from state to state). For example, after the execution of \texttt{"obj1 = obj2;"}, the pointer elements that are the interpretations of the program variables \texttt{obj1} resp. \texttt{obj2} are assigned the same object element.

Note, that states do not contain any information on control flow such as a program counter or the fact that an exception has been thrown.

Programs and Formulas The semantics of a program \(p\) is a state transition, i.e., it assigns to each state \(s\) the set of all states that can be reached by running \(p\) starting in \(s\). Since JAVA CARD is deterministic, that set either contains exactly one state or is empty. The set of states

\footnote{Following another approach, Nipkow and von Oheimb have obtained a precise semantics of a JAVA sublanguage by embedding it into Isabelle/HOL; they also use an axiomatic semantics [9].}
of a model must be closed under the reachability relation for all programs p, i.e., all states that are reachable must exist in a model (other models are not considered).

The semantics of a logical term t occurring in a program is the same as that of an expression whose evaluation is free of side-effects and gives the same value as t.

For formulas ϕ that do not contain programs, the notion of ϕ being satisfied by a state is defined as usual in first-order logic. A formula $\langle p \rangle \phi$ is satisfied by a state if the program p, when started in s, terminates in a state s' in which ϕ is satisfied. A formula is satisfied by a model M, if it is satisfied by one of the states of M. A formula is valid in a model M if it is satisfied by all states of M; and a formula is valid if it is valid in all models.

We consider programs that terminate abnormally to be non-terminating. Examples are a program that throws an uncaught exception and a return statement that is not within the boundaries of a method invocation. Thus, for example, $\langle \text{throw } x_i \rangle \phi$ is unsatisfiable for all ϕ.

Sequents. The semantics of a sequent $\psi_1, \ldots, \psi_m \vdash \psi_1, \ldots, \psi_n$ is the same as that of the formula $(\psi_1 \land \ldots \land \psi_m) \rightarrow (\psi_1 \lor \ldots \lor \psi_n)$.

4 A Sequent Calculus for Java Card DL

In this section we outline the ideas behind the sequent calculus for Java Card DL, and we present some of the basic rules.

The DL rules of our calculus operate on the first active command p of a program $πpω$. The non-active prefix $π$ consists of an arbitrary sequence of opening braces “{”, labels, beginnings “try{” of try-catch blocks, and beginnings “call(...)” of method invocation blocks. The prefix is needed to keep track of the blocks that the (first) active command is part of, such that the commands throw, return, break, and continue that abruptly change the control flow can be handled appropriately.

Assignment Rule. The assignment rule is the most important rule of the DL calculus:

$$
\frac{Γ \vdash expr[z\leftarrow c] \phi, Δ \Gamma \vdash z = expr; \phi, Δ }{
Γ \vdash (z = expr; \phi, Δ)}
$$

where c is a new constant

In classical DL rule (1) is always applicable; here however, we have to impose a restriction: this rule can only be used if the expression $expr$ is a logical term. Otherwise, other rules have to be applied first to evaluate $expr$ (as that evaluation may have side effects). For example, these rules replace the formula $(x = ++1;i)\phi$ by $(i = i+1; x = i; i)\phi$.

Moreover, the handling of updates is more difficult in Java Card DL: In classical DL $\phi[z\leftarrow y]$ is equivalent to the formula that is constructed from ϕ by syntactically replacing z by y. Now however, because several pointers may point to the same object, more complex rules for the simplification of $\phi[z\leftarrow y]$ have to be used.

Rule for Creating Objects. The new statement is treated by the calculus as if it were implemented as follows (this implementation accesses the fields that are implicitly defined for all classes, see the explanation in Section 2):

2 These are simplified versions of the actual rules. In particular, initialisation of objects and classes is not considered.

3 In classical DL, where no prefixes are needed, any formula of the form $\langle p q \rangle \phi$ can be replaced by $\langle p \rangle (q)\phi$. In our calculus, splitting of $\langle πpω \rangle \phi$ into $\langle πp \rangle (qω)\phi$ is not possible (unless the prefix $π$ is empty) because $πp$ is not a valid program; and the formula $\langle πpω \rangle (πqω)\phi$ cannot be used either because its semantics is in general different from that of $\langle πpω \rangle \phi$.

5
public static \{cdv\{Cls\} new() {
 if (lastCreatedObj == null)
 lastCreatedObj = firstObj;
 else
 lastCreatedObj = lastCreatedObj.nextObj;
 lastCreatedObj.created = true;
 return lastCreatedObj;
}

Rules for Loops. The following rules allow to “unwind” while loops (these are simplified versions of the rules that do not work if prg contains a continue statement); similar rules are defined for do-while and for loops.

\[
\frac{\Gamma \vdash \langle x = \text{cmd}; \x \equiv \text{true} \rangle, \Delta}{\Gamma \vdash \langle \pi \text{ while (cmd) prg; } \omega \phi, \Delta \rangle} \quad \frac{\Gamma \vdash \langle x = \text{cmd}; \x \equiv \text{false} \rangle, \Delta}{\Gamma \vdash \langle \pi \text{ while (cmd) prg; } \omega \phi, \Delta \rangle}
\]

(2)

These rules allow to handle loops if used together with induction schemata for the primitive and the user defined types, such as:

\[
\frac{\Gamma \vdash \phi(c), \Delta \quad \Gamma \vdash \langle \forall x \varphi(x) \rightarrow \phi(f(x)) \rangle, \Delta}{\Gamma \vdash \langle \forall x \varphi(x) \rangle, \Delta}
\]

(4)

(3)

Rules for Handling Exceptions. The following rules allow to handle try-catch-finally blocks and the throw statement. Again, these are simplified versions of the actual rules; they are only applicable if the statements break, continue, and return do not occur.

\[
\frac{\Gamma \vdash \langle \pi \text{ try}\{e = x; g\}\text{finally}\{r\} \omega \phi, \Delta \rangle}{\Gamma \vdash \langle \pi \text{ try}\{\text{throw } x; p\}\text{catch}(T_1, e_1)\{g_1\}\ldots\text{catch}(T_n, e_n)\{g_n\}\text{finally}\{r\} \omega \phi, \Delta \rangle}
\]

(5)

\[
\frac{\Gamma \vdash \langle \pi \text{ try}\{\text{throw } x; p\}\text{catch}(T_1, e_1)\{g_1\}\ldots\text{catch}(T_n, e_n)\{g_n\}\text{finally}\{r\} \omega \phi, \Delta \rangle}{\Gamma \vdash \langle \pi \text{ try}\{\text{throw } x; p\} \text{catch}(T_1, e_1)\{g_1\}\ldots\text{catch}(T_n, e_n)\{g_n\}\text{finally}\{r\} \omega \phi, \Delta \rangle}
\]

(6)

\[
\frac{\Gamma \vdash \langle \pi \text{ try}\{\text{catch}(T_1, e_1)\{g_1\}\ldots\text{catch}(T_n, e_n)\{g_n\}\text{finally}\{r\} \omega \phi, \Delta \rangle}{\Gamma \vdash \langle \pi \text{ throw } x; \omega \phi, \Delta \rangle}
\]

(7)

The rule (5) applies if an exception \(x\) is thrown that is an instance of one of the classes \(T_1, \ldots, T_n\) and \(T_i\) is the first such class, i.e., the exception is caught; otherwise, if the exception is not caught, rule (6) applies. Rule (7) applies if the try blocks terminates normally.

References