
KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Prof. Dr. Bernhard Beckert | ADAPT 2010

Functional Verification of Java Programs

Specification & Formal Analysis of Java Programs

KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Dynamic Logic Formulas (Simple
Version)

Definition (Dynamic Logic Formulas (DL Formulas))
Each FOL formula is a DL formula

If p is a program and φ a DL formula then
{
〈p〉φ
[p]φ

}
is a DL

formula
DL formulas closed under FOL quantifiers and connectives

Program variables are flexible constants: never bound in
quantifiers
Program variables need not be declared or initialized in
program
Programs contain no logical variables
Modalities can be arbitrarily nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 2/23

Dynamic Logic Formulas (Simple
Version)

Definition (Dynamic Logic Formulas (DL Formulas))
Each FOL formula is a DL formula

If p is a program and φ a DL formula then
{
〈p〉φ
[p]φ

}
is a DL

formula
DL formulas closed under FOL quantifiers and connectives

Program variables are flexible constants: never bound in
quantifiers
Program variables need not be declared or initialized in
program
Programs contain no logical variables
Modalities can be arbitrarily nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 2/23

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
∀int y ; ((〈x = 1;〉x .

= y) <−> (〈x = 1*1;〉x
.

= y))

Well-formed if FSymnr contains int x;

∃int x ; [x = 1;](x
.

= 1)

Not well-formed, because logical variable occurs in
program
〈x = 1;〉([while (true) {};]false)

Well-formed if FSymnr contains int x;
program formulas can be nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
∀int y ; ((〈x = 1;〉x .

= y) <−> (〈x = 1*1;〉x
.

= y))

Well-formed if FSymnr contains int x;

∃int x ; [x = 1;](x
.

= 1)

Not well-formed, because logical variable occurs in
program
〈x = 1;〉([while (true) {};]false)

Well-formed if FSymnr contains int x;
program formulas can be nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
∀int y ; ((〈x = 1;〉x .

= y) <−> (〈x = 1*1;〉x
.

= y))

Well-formed if FSymnr contains int x;

∃int x ; [x = 1;](x
.

= 1)

Not well-formed, because logical variable occurs in
program
〈x = 1;〉([while (true) {};]false)

Well-formed if FSymnr contains int x;
program formulas can be nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
∀int y ; ((〈x = 1;〉x .

= y) <−> (〈x = 1*1;〉x
.

= y))

Well-formed if FSymnr contains int x;

∃int x ; [x = 1;](x
.

= 1)

Not well-formed, because logical variable occurs in
program
〈x = 1;〉([while (true) {};]false)

Well-formed if FSymnr contains int x;
program formulas can be nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
∀int y ; ((〈x = 1;〉x .

= y) <−> (〈x = 1*1;〉x
.

= y))

Well-formed if FSymnr contains int x;

∃int x ; [x = 1;](x
.

= 1)

Not well-formed, because logical variable occurs in
program
〈x = 1;〉([while (true) {};]false)

Well-formed if FSymnr contains int x;
program formulas can be nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
∀int y ; ((〈x = 1;〉x .

= y) <−> (〈x = 1*1;〉x
.

= y))

Well-formed if FSymnr contains int x;

∃int x ; [x = 1;](x
.

= 1)

Not well-formed, because logical variable occurs in
program
〈x = 1;〉([while (true) {};]false)

Well-formed if FSymnr contains int x;
program formulas can be nested

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

Semantic Evaluation of Program
Formulas

Definition (Validity Relation for Program Formulas)
s, β |= 〈p〉φ iff ρ(p)(s), β |= φ and ρ(p)(s) is defined

p terminates and φ is true in the final state after execution
s, β |= [p]φ iff ρ(p)(s), β |= φ whenever ρ(p)(s) is
defined

If p terminates then φ is true in the final state after
execution

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 4/23

Program Correctness

Definition (Notions of Correctness)
If s, β |= 〈p〉φ then
p totally correct (with respect to φ) in s, β
If s, β |= [p]φ then
p partially correct (with respect to φ) in s, β

Duality 〈p〉φ iff ![p] !φ
Exercise: justify this with help of semantic definitions
Implication if 〈p〉φ then [p]φ
Total correctness implies partial correctness

converse is false
holds only for deterministic programs

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 5/23

Semantics of Sequents
Γ = {φ1, . . . , φn} and ∆ = {ψ1, . . . , ψm} sets of program
formulas
where all logical variables occur bound

Recall: s |= (Γ =⇒ ∆) iff s |= (φ1 & · · · & φn) −> (ψ1 | · · · | ψm)

Define semantics of DL sequents identical to semantics of FOL
sequents

Definition (Validity of Sequents over Program Formulas)
A sequent Γ =⇒ ∆ over program formulas is valid iff

s |= (Γ =⇒ ∆) in all states s

Consequence for program variables
Initial value of program variables implicitly “universally
quantified”

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 6/23

Semantics of Sequents
Γ = {φ1, . . . , φn} and ∆ = {ψ1, . . . , ψm} sets of program
formulas
where all logical variables occur bound

Recall: s |= (Γ =⇒ ∆) iff s |= (φ1 & · · · & φn) −> (ψ1 | · · · | ψm)

Define semantics of DL sequents identical to semantics of FOL
sequents

Definition (Validity of Sequents over Program Formulas)
A sequent Γ =⇒ ∆ over program formulas is valid iff

s |= (Γ =⇒ ∆) in all states s

Consequence for program variables
Initial value of program variables implicitly “universally
quantified”

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 6/23

Initial States

Java initial states
KeY prover “starts” programs in initial states according to Java
convention:

Values of array entries initialized to default values: int[]
to 0, etc.
Static object initialization
No objects created

How to restrict validity to set of initial states S0 ⊆ S ?

1 Design closed FOL formula Init with
s |= Init iff s ∈ S0

2 Use sequent Γ, Init =⇒ ∆

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 7/23

Operational Semantics of Programs

In labelled transition system K = (S, ρ):
ρ : Π→ (S → S) is operational semantics of programs p ∈ Π

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)
States s interpret non-rigid symbols f with Is(f)

ρ(x=t)(s) = s′ where s′ identical to s except Is′(x) = vals(t)

Very tedious task to define ρ for Java . . .
⇒ go directly to calculus for program formulas!

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 8/23

Operational Semantics of Programs

In labelled transition system K = (S, ρ):
ρ : Π→ (S → S) is operational semantics of programs p ∈ Π

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)
States s interpret non-rigid symbols f with Is(f)

ρ(x=t)(s) = s′ where s′ identical to s except Is′(x) = vals(t)

Very tedious task to define ρ for Java . . .
⇒ go directly to calculus for program formulas!

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 8/23

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; r ?

Symbolic Execution (King, late 60s)
Follow the natural control flow when analysing a program
Values of some variables unknown: symbolic state
representation

Example
Compute the final state after termination of

int x; int y; x=x+y; y=x-y; x=x-y;

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 9/23

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential program p; q; r ?

Symbolic Execution (King, late 60s)
Follow the natural control flow when analysing a program
Values of some variables unknown: symbolic state
representation

Example
Compute the final state after termination of

int x; int y; x=x+y; y=x-y; x=x-y;

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 9/23

Symbolic Execution of Programs
Cont’d

General form of rule conclusions in symbolic execution
calculus

〈stmt; rest〉φ, [stmt; rest]φ

Rules must symbolically execute first statement
Repeated application of rules in a proof corresponds to
symbolic program execution

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 10/23

Symbolic Execution of Programs
Cont’d

Symbolic execution of assignment

assign
{x/xold}Γ, x

.
= {x/xold}t =⇒ 〈rest〉φ, {x/xold}∆
Γ =⇒ 〈x = t; rest〉φ,∆

xold new program variable that “rescues” old value of x

Example
Conclusion matching: {x/x}, {t/x+y},
{rest/y=x-y; x=x-y;}, {φ/(x

.
= y0 & y

.
= x0)},

{Γ/x .
= x0, y

.
= y0}, {∆/∅}

xold
.

= x0, y
.

= y0, x
.

= xold +y =⇒ 〈y=x-y; x=x-y;〉(x .
= y0 & y

.
= x0)

x
.

= x0, y
.

= y0 =⇒ 〈x=x+y; y=x-y; x=x-y;〉(x .
= y0 & y

.
= x0)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 11/23

Symbolic Execution of Programs
Cont’d

Symbolic execution of assignment

assign
{x/xold}Γ, x

.
= {x/xold}t =⇒ 〈rest〉φ, {x/xold}∆
Γ =⇒ 〈x = t; rest〉φ,∆

xold new program variable that “rescues” old value of x

Example
Conclusion matching: {x/x}, {t/x+y},
{rest/y=x-y; x=x-y;}, {φ/(x

.
= y0 & y

.
= x0)},

{Γ/x .
= x0, y

.
= y0}, {∆/∅}

xold
.

= x0, y
.

= y0, x
.

= xold +y =⇒ 〈y=x-y; x=x-y;〉(x .
= y0 & y

.
= x0)

x
.

= x0, y
.

= y0 =⇒ 〈x=x+y; y=x-y; x=x-y;〉(x .
= y0 & y

.
= x0)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 11/23

Proving Partial Correctness

Partial correctness assertion
If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre −> [p]Post (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

\programVariables {
int x; int y; }

\problem {
(\forall int x0; \forall int y0; ((x=x0 & y=y0) ->

\<{x=x+y; y=x-y; x=x-y;}\>(x=y0 & y=x0)))
}

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 12/23

Proving Partial Correctness

Partial correctness assertion
If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
In DL Pre −> [p]Post (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

\programVariables {
int x; int y; }

\problem {
(\forall int x0; \forall int y0; ((x=x0 & y=y0) ->

\<{x=x+y; y=x-y; x=x-y;}\>(x=y0 & y=x0)))
}

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 12/23

More Properties

Example
∀T y ; ((〈p〉x .

= y) <−> (〈q〉x .
= y))

Not valid in general
Programs p behave q equivalently on variable T x

Example
∃T y ; (x

.
= y −> 〈p〉true)

Not valid in general
Program p terminates in all states where x has suitable initial
value

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

More Properties

Example
∀T y ; ((〈p〉x .

= y) <−> (〈q〉x .
= y))

Not valid in general
Programs p behave q equivalently on variable T x

Example
∃T y ; (x

.
= y −> 〈p〉true)

Not valid in general
Program p terminates in all states where x has suitable initial
value

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

More Properties

Example
∀T y ; ((〈p〉x .

= y) <−> (〈q〉x .
= y))

Not valid in general
Programs p behave q equivalently on variable T x

Example
∃T y ; (x

.
= y −> 〈p〉true)

Not valid in general
Program p terminates in all states where x has suitable initial
value

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

More Properties

Example
∀T y ; ((〈p〉x .

= y) <−> (〈q〉x .
= y))

Not valid in general
Programs p behave q equivalently on variable T x

Example
∃T y ; (x

.
= y −> 〈p〉true)

Not valid in general
Program p terminates in all states where x has suitable initial
value

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

Symbolic Execution of Programs
Cont’d

Symbolic execution of conditional

if
Γ,b

.
= true =⇒ 〈p; rest〉φ,∆ Γ,b

.
= false =⇒ 〈q; rest〉φ,∆

Γ =⇒ 〈if (b) { p } else { q } ; rest〉φ,∆

Symbolic execution must consider all possible execution
branches

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ 〈if (b) { p; while (b) p}; r〉φ,∆

Γ =⇒ 〈while (b) {p}; r〉φ,∆

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 14/23

Symbolic Execution of Programs
Cont’d

Symbolic execution of conditional

if
Γ,b

.
= true =⇒ 〈p; rest〉φ,∆ Γ,b

.
= false =⇒ 〈q; rest〉φ,∆

Γ =⇒ 〈if (b) { p } else { q } ; rest〉φ,∆

Symbolic execution must consider all possible execution
branches

Symbolic execution of loops: unwind

unwindLoop
Γ =⇒ 〈if (b) { p; while (b) p}; r〉φ,∆

Γ =⇒ 〈while (b) {p}; r〉φ,∆

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 14/23

Quantifying over Program Variables

How to express correctness for any initial value of program
variable?

Not allowed: ∀T i; 〈...i...〉φ
(program 6= logical variable)

Not intended: =⇒ 〈...i...〉φ (Validity of sequents:
quantification over all states)

As previous: ∀T i0; (i0
.

= i −> 〈...i...〉φ)

Solution
Use explicit construct to record values in current state

Update ∀T i0; ({i := i0}〈...i...〉φ)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

Quantifying over Program Variables

How to express correctness for any initial value of program
variable?

Not allowed: ∀T i; 〈...i...〉φ
(program 6= logical variable)

Not intended: =⇒ 〈...i...〉φ (Validity of sequents:
quantification over all states)

As previous: ∀T i0; (i0
.

= i −> 〈...i...〉φ)

Solution
Use explicit construct to record values in current state

Update ∀T i0; ({i := i0}〈...i...〉φ)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

Quantifying over Program Variables

How to express correctness for any initial value of program
variable?

Not allowed: ∀T i; 〈...i...〉φ
(program 6= logical variable)

Not intended: =⇒ 〈...i...〉φ (Validity of sequents:
quantification over all states)

As previous: ∀T i0; (i0
.

= i −> 〈...i...〉φ)

Solution
Use explicit construct to record values in current state

Update ∀T i0; ({i := i0}〈...i...〉φ)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

Quantifying over Program Variables

How to express correctness for any initial value of program
variable?

Not allowed: ∀T i; 〈...i...〉φ
(program 6= logical variable)

Not intended: =⇒ 〈...i...〉φ (Validity of sequents:
quantification over all states)

As previous: ∀T i0; (i0
.

= i −> 〈...i...〉φ)

Solution
Use explicit construct to record values in current state

Update ∀T i0; ({i := i0}〈...i...〉φ)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

Quantifying over Program Variables

How to express correctness for any initial value of program
variable?

Not allowed: ∀T i; 〈...i...〉φ
(program 6= logical variable)

Not intended: =⇒ 〈...i...〉φ (Validity of sequents:
quantification over all states)

As previous: ∀T i0; (i0
.

= i −> 〈...i...〉φ)

Solution
Use explicit construct to record values in current state

Update ∀T i0; ({i := i0}〈...i...〉φ)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

Explicit State Updates

Updates specify computation state where formula is evaluated

Definition (Syntax of Updates)
If v is program variable, t FOL term type-compatible with v,
t ′ any FOL term, and φ any DL formula, then

{v := t}t ′ is DL term
{v := t}φ is DL formula

Definition (Semantics of Updates)
State s interprets non-rigid symbols f with Is(f)
β variable assignment for logical variables in t

ρ({v := t})(s) = s′ where s′ identical to s except
Is′(x) = vals,β(t)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 16/23

Explicit State Updates Cont’d

Facts about updates {v := t}
Update semantics identical to assignment
Value of update depends on logical variables in t :
Updates as “lazy” assignments (no term substitution done)
Updates are not assignments: right-hand side is FOL term

{x := n}φ cannot be turned into assignment (n logical
variable)

〈x=i++;〉φ cannot directly be turned into update
Updates are not equations: change value of non-rigid
terms
KeY simplifies and applies (if possible) updates
automatically.

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 17/23

Assignment Rule Using Updates

Symbolic execution of assignment using updates

assign
Γ =⇒ {x := t}〈rest〉φ,∆

Γ =⇒ 〈x = t; rest〉φ,∆

Avoids renaming of program variables
Works as long as t has no side effects (ok in simple DL)
Special cases for x =t1 + t2, etc.

Demo
swap.key

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 18/23

Example Proof

Example

\programVariables {
int x;

}
\problem {
(\exists int y;
({x := y}\<{while (x > 0) {x = x-1;}}\> x=0))

}

Intuitive Meaning? Satisfiable? Valid?

Demo
term.key

What to do when we cannot determine a concrete loop bound?

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 19/23

Example Proof

Example

\programVariables {
int x;

}
\problem {
(\exists int y;
({x := y}\<{while (x > 0) {x = x-1;}}\> x=0))

}

Intuitive Meaning? Satisfiable? Valid?

Demo
term.key

What to do when we cannot determine a concrete loop bound?

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 19/23

Parallel Updates

How to apply updates on updates?

Example
Symbolic execution of

int x; int y; x=x+y; y=x-y; x=x-y;

yields:
{x := x+y}{y := x-y}{x := x-y}

Need to compose three sequential state changes into a single
one!

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 20/23

Parallel Updates Cont’d

Definition (Parallel Update)
A parallel update is expression of the form
{l1 := v1|| · · · ||ln := vn} where each {li := vi} is simple update

All vi computed in old state before update is applied
Updates of all locations li executed simultaneously
Upon conflict li = lj , vi 6= vj later update (max{i , j})
wins

Definition (Composition Sequential Updates/Conflict
Resolution)
{l1 := r1}{l2 := r2} = {l1 := r1||l2 := {l1 := r1}r2}

{l1 := v1|| · · · ||ln := vn}x =

{
x if x 6∈ {l1, . . . , ln}
vk if x = lk , x 6∈ {lk+1, . . . , ln}

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 21/23

Parallel Updates Cont’d

Definition (Parallel Update)
A parallel update is expression of the form
{l1 := v1|| · · · ||ln := vn} where each {li := vi} is simple update

All vi computed in old state before update is applied
Updates of all locations li executed simultaneously
Upon conflict li = lj , vi 6= vj later update (max{i , j})
wins

Definition (Composition Sequential Updates/Conflict
Resolution)
{l1 := r1}{l2 := r2} = {l1 := r1||l2 := {l1 := r1}r2}

{l1 := v1|| · · · ||ln := vn}x =

{
x if x 6∈ {l1, . . . , ln}
vk if x = lk , x 6∈ {lk+1, . . . , ln}

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 21/23

Parallel Updates Cont’d

Example

({x := x+y}{y := x-y}){x := x-y} =
{x := x+y || y := (x+y)-y}{x := x-y} =
{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{x := x+y || y := x || x := y} =
{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
swap.key

Parallel updates to store intermediate state of symbolic
computation

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 22/23

Parallel Updates Cont’d

Example

({x := x+y}{y := x-y}){x := x-y} =
{x := x+y || y := (x+y)-y}{x := x-y} =
{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)} =
{x := x+y || y := x || x := y} =
{y := x || x := y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
swap.key

Parallel updates to store intermediate state of symbolic
computation

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 22/23

A Warning

First-order rules that substitute arbitrary terms

∃−right
Γ =⇒ [x/t ′]φ, ∃T x ; φ,∆

Γ =⇒ ∃T x ; φ,∆
∀−left

Γ, ∀T x ; φ, [x/t ′]φ =⇒ ∆

Γ, ∀T x ; φ =⇒ ∆

applyEq
Γ, t .

= t ′, [t/t ′]ψ =⇒ [t/t ′]φ,∆

Γ, t .
= t ′, ψ =⇒ φ,∆

t , t ′ must be rigid, because all occurrences must have the same
value

Example

Γ,i
.

= 0 −> 〈i++〉i .
= 0 =⇒ ∆

Γ, ∀T x ; (x .
= 0 −> 〈i++〉x .

= 0) =⇒ ∆

Logically valid formula would result in unsatisfiable antecedent!
KeY prohibits unsound substitutions

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 23/23

	Dynamic Logic
	Program Formulas
	Program Formula Valuation
	Correctness
	Operational Semantics
	Symbolic Execution
	Updates
	Parallel Updates
	Restrictions

