Specification \& Formal Analysis of Java Programs

 Functional Verification of Java ProgramsProf. Dr. Bernhard Beckert | ADAPT 2010

KIT - Institut für Theoretische Informatik

Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

- Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula then $\left\{\begin{array}{c}\{\mathrm{p}\rangle \phi \\ {[\mathrm{p}] \phi}\end{array}\right\}$ is a DL formula
- DL formulas closed under FOL quantifiers and connectives
- Program variables are flexible constants: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested

Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

- Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula then $\left\{\begin{array}{c}\langle\mathrm{p}\rangle \phi \\ {[\mathrm{p}] \phi}\end{array}\right\}$ is a DL formula
- DL formulas closed under FOL quantifiers and connectives
- Program variables are flexible constants: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- \forall int $y ;((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$ Well-formed if FSym $_{n r}$ contains int

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- \forall int $y ;((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$ Well-formed if $\mathrm{FSym}_{n r}$ contains int x ;

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- \forall int $y ;((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$

Well-formed if $\mathrm{FSym}_{n r}$ contains int x ;

- \exists int $x ;[x=1 ;](x \doteq 1)$

Not well-formed, because logical variable occurs in program

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- \forall int $y ;((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$ Well-formed if $\mathrm{FSym}_{n r}$ contains int x ;
- \exists int $x ;[\mathrm{x}=1$; $](\mathrm{x} \doteq 1)$

Not well-formed, because logical variable occurs in program

- $\langle\mathrm{x}=1$; $\rangle($ [while (true) $\} ;]$ false $)$

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- \forall int $y ;((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$

Well-formed if $\mathrm{FSym}_{n r}$ contains int x ;

- \exists int $x ;[x=1$; $](x \doteq 1)$

Not well-formed, because logical variable occurs in program

- $\langle\mathrm{x}=1$; $\rangle([$ while (true) $\} ;]$ false)

Well-formed if $\mathrm{FSym}_{n r}$ contains int
program formulas can be nested

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- \forall int $y ;((\langle\mathrm{x}=1 ;\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{x}=1 * 1 ;\rangle \mathrm{x} \doteq y))$ Well-formed if $\mathrm{FSym}_{n r}$ contains int x ;
- \exists int $x ;[\mathrm{x}=1$; $](\mathrm{x} \doteq 1)$

Not well-formed, because logical variable occurs in program

- $\langle\mathrm{x}=1$; $\rangle([$ while (true) $\} ;]$ false $)$

Well-formed if $\mathrm{FSym}_{n r}$ contains int x ; program formulas can be nested

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

- $s, \beta \models\langle\mathrm{p}\rangle \phi \quad$ iff $\quad \rho(\mathrm{p})(\mathrm{s}), \beta \models \phi$ and $\rho(\mathrm{p})(\mathrm{s})$ is defined
p terminates and ϕ is true in the final state after execution
- $s, \beta \models[\mathrm{p}] \phi \quad$ iff $\quad \rho(\mathrm{p})(\mathrm{s}), \beta \models \phi$ whenever $\rho(\mathrm{p})(\mathrm{s})$ is defined

If p terminates then ϕ is true in the final state after execution

Program Correctness

Definition (Notions of Correctness)

- If $s, \beta \models\langle\mathrm{p}\rangle \phi$ then
p totally correct (with respect to ϕ) in s, β
- If $s, \beta=[\mathrm{p}] \phi$ then
p partially correct (with respect to ϕ) in s, β
- Duality $\langle\mathrm{p}\rangle \phi$ iff ![p]! ϕ

Exercise: justify this with help of semantic definitions

- Implication if $\langle\mathrm{p}\rangle \phi$ then $[\mathrm{p}] \phi$ Total correctness implies partial correctness
- converse is false
- holds only for deterministic programs

Semantics of Sequents

$\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ and $\Delta=\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ sets of program formulas
where all logical variables occur bound
Recall: $s \mid=(\Gamma \Longrightarrow \Delta)$ iff $s \models\left(\phi_{1} \& \cdots \& \phi_{n}\right) \rightarrow\left(\psi_{1}|\cdots| \psi_{m}\right)$
Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \Longrightarrow \Delta$ over program formulas is valid iff

$$
s \models(\Gamma \Longrightarrow \Delta) \text { in all states } s
$$

Initial value of program variables implicitly "universally

Semantics of Sequents

$\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ and $\Delta=\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ sets of program formulas
where all logical variables occur bound
Recall: $s \models(\Gamma \Longrightarrow \Delta)$ iff $s \models\left(\phi_{1} \& \cdots \& \phi_{n}\right) \rightarrow\left(\psi_{1}|\cdots| \psi_{m}\right)$
Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \Longrightarrow \Delta$ over program formulas is valid iff

$$
s \models(\Gamma \Longrightarrow \Delta) \text { in all states } s
$$

Consequence for program variables

Initial value of program variables implicitly "universally quantified"

Initial States

Java initial states

KeY prover "starts" programs in initial states according to Java convention:

- Values of array entries initialized to default values: int [] to 0, etc.
- Static object initialization
- No objects created

How to restrict validity to set of initial states $S_{0} \subseteq S$?
(1) Design closed FOL formula Init with
$s \vDash$ Init iff
$s \in S_{0}$
(2) Use sequent Γ, Init $\Longrightarrow \Delta$

Operational Semantics of Programs

In labelled transition system $K=(S, \rho)$:
$\rho: \Pi \rightarrow(S \rightarrow S)$ is operational semantics of programs $p \in \Pi$

How is ρ defined for concrete programs and states?

Operational Semantics of Programs

In labelled transition system $K=(S, \rho)$:
$\rho: \Pi \rightarrow(S \rightarrow S)$ is operational semantics of programs $p \in \Pi$

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)

States s interpret non-rigid symbols f with $\mathcal{I}_{s}(f)$
$\rho(\mathrm{x}=\mathrm{t})(s)=s^{\prime}$ where s^{\prime} identical to s except $\mathcal{I}_{s^{\prime}}(x)=\operatorname{val}_{s}(t)$
Very tedious task to define ρ for Java ...
\Rightarrow go directly to calculus for program formulas!

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula What is "top-level" in a sequential program p; q; r?

Symbolic Execution (King, late 60s)

- Follow the natural control flow when analysing a program
- Values of some variables unknown: symbolic state representation

Compute the final state after termination of
int x int int

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula What is "top-level" in a sequential program p; q; r?

Symbolic Execution (King, late 60s)

- Follow the natural control flow when analysing a program
- Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

$$
\text { int } x ; \text { int } y ; x=x+y ; y=x-y ; x=x-y \text {; }
$$

Symbolic Execution of Programs Cont'd

General form of rule conclusions in symbolic execution calculus

$$
\langle\text { stmt; rest〉 } \phi, \quad[\text { stmt; rest }] \phi
$$

- Rules must symbolically execute first statement
- Repeated application of rules in a proof corresponds to symbolic program execution

Symbolic Execution of Programs Cont'd

Symbolic execution of assignment

$$
\text { assign } \frac{\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} \Gamma, \mathrm{x} \doteq\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} t \Rightarrow\langle\text { rest }\rangle \phi,\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} \Delta}{\Gamma \Longrightarrow\langle\mathrm{x}=\mathrm{t} ; \text { rest }\rangle \phi, \Delta}
$$

$x_{\text {old }}$ new program variable that "rescues" old value of x

Conclusion matching:

\qquad

Symbolic Execution of Programs Cont'd

Symbolic execution of assignment

assign $\frac{\left\{\mathrm{x}^{\prime} / \mathrm{x}_{\text {old }}\right\} \Gamma, \mathrm{x} \doteq\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} t \Rightarrow\langle\text { rest }\rangle \phi,\left\{\mathrm{x} / \mathrm{x}_{\text {old }}\right\} \Delta}{\Gamma \Longrightarrow\langle\mathrm{x}=\mathrm{t} ; \mathrm{rest}\rangle \phi, \Delta}$
$\mathrm{x}_{\text {old }}$ new program variable that "rescues" old value of x

Example

Conclusion matching: $\{x / x\},\{t / x+y\}$,

$$
\begin{aligned}
& \{\text { rest } / \mathrm{y}=\mathrm{x}-\mathrm{y} ; \mathrm{x}=\mathrm{x}-\mathrm{y} ;\},\left\{\phi /\left(\mathrm{x} \doteq y_{0} \& \mathrm{y} \doteq x_{0}\right)\right\} \\
& \left\{\Gamma / \mathrm{x} \doteq x_{0}, \mathrm{y} \doteq y_{0}\right\},\{\Delta / \emptyset\} \\
& \\
& \quad \mathrm{x}_{\mathrm{old}} \doteq x_{0}, \mathrm{y} \doteq y_{0}, \mathrm{x} \doteq \mathrm{x}_{\text {old }}+\mathrm{y} \Rightarrow\langle\mathrm{y}=\mathrm{x}-\mathrm{y} ; \mathrm{x}=\mathrm{x}-\mathrm{y} ;\rangle\left(\mathrm{x} \doteq y_{0} \& \mathrm{y} \doteq x_{0}\right) \\
& \mathrm{x} \doteq x_{0}, \mathrm{y} \doteq y_{0} \Rightarrow\langle\mathrm{x}=\mathrm{x}+\mathrm{y} ; \mathrm{y}=\mathrm{x}-\mathrm{y} ; \mathrm{x}=\mathrm{x}-\mathrm{y} ;\rangle\left(\mathrm{x} \doteq y_{0} \& \mathrm{y} \doteq x_{0}\right)
\end{aligned}
$$

Proving Partial Correctness

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates, then its final state satisfies Post

In Hoare logic \{Pre\} p \{Post\}
In DL Pre \rightarrow [p]Post
(Pre, Post must be FOL)
(Pre, Post any DL formula)
\programVariables
int x; int
\problem
(\forall int x 0 ; \forall int

Proving Partial Correctness

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates, then its final state satisfies Post

In Hoare logic \{Pre\} p \{Post\}

In DL Pre \rightarrow [p]Post

(Pre, Post must be FOL)
(Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

\programVariables

```
int x; int y; }
```

\problem \{
(\backslash forall int $x 0 ; ~ \$ forall int $y 0 ; ~((x=x 0 \& y=y 0) ~->~$
$\backslash<\{x=x+y ; y=x-y ; x=x-y ;\}\rangle(x=y 0 \& y=x 0)))$
\}

More Properties

Example

$$
\forall T y ;((\langle p\rangle x \doteq y) \leftrightarrow(\langle q\rangle x \doteq y))
$$

Not valid in general
Programs p behave q equivalently on variable T

Example

$\exists T y ;(x \doteq y \rightarrow$ pptrue $)$
Not valid in general
Program p terminates in all states where x has suitable initial value

More Properties

Example
 $\forall T y ;((\langle\mathrm{p}\rangle \mathrm{x} \doteq y)<-(\langle\mathrm{q}\rangle \mathrm{x} \doteq y))$

Not valid in general
Programs p behave q equivalently on variable $T \mathrm{x}$

More Properties

> Example
> $\forall T y ;((\langle\mathrm{p}\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{q}\rangle \mathrm{x} \doteq y))$

Not valid in general
Programs p behave q equivalently on variable $T \mathrm{x}$

$$
\begin{aligned}
& \text { Example } \\
& \exists T y ;(\mathrm{x} \doteq y \rightarrow\langle\mathrm{p}\rangle \text { true }) \\
& \text { Not valid in general } \\
& \text { Program p terminates in all states where } \mathrm{x} \text { has suitable initial } \\
& \text { value }
\end{aligned}
$$

More Properties

Example

$\forall T y ;((\langle\mathrm{p}\rangle \mathrm{x} \doteq y) \leftrightarrow(\langle\mathrm{q}\rangle \mathrm{x} \doteq y))$
Not valid in general
Programs p behave q equivalently on variable $T \mathrm{x}$

> Example
> $\exists T y ;(x \doteq y \rightarrow\langle p\rangle$ true $)$
> Not valid in general
> Program p terminates in all states where x has suitable initial value

Symbolic Execution of Programs Cont'd

Symbolic execution of conditional

$$
\text { if } \frac{\Gamma, \mathrm{b} \doteq \text { true } \Rightarrow\langle\mathrm{p} ; \text { rest }\rangle \phi, \Delta \quad \Gamma, \mathrm{b} \doteq \text { false } \Rightarrow\langle\mathrm{q} ; \text { rest }\rangle}{\Gamma \Rightarrow\langle\text { if (b) }\{\mathrm{p}\} \text { else }\{\mathrm{q}\} ; \text { rest }\rangle \phi, \Delta}
$$

Symbolic execution must consider all possible execution branches

Symbolic Execution of Programs Cont'd

Symbolic execution of conditional

$$
\text { if } \frac{\Gamma, \mathrm{b} \doteq \text { true } \Rightarrow\langle\mathrm{p} ; \text { rest }\rangle \phi, \Delta \quad \Gamma, \mathrm{b} \doteq \text { false } \Rightarrow\langle\mathrm{q} ; \text { rest }\rangle}{\Gamma \Rightarrow\langle\text { if (b) }\{\mathrm{p}\} \text { else }\{\mathrm{q}\} ; \text { rest }\rangle \phi, \Delta}
$$

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow\langle\text { if (b) }\{\mathrm{p} ; \text { while (b) } \mathrm{p}\} ; \mathrm{r}\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\text { while }(\mathrm{b})\{\mathrm{p}\} ; \mathrm{r}\rangle \phi, \Delta}
$$

Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: $\quad \forall T i ;\langle\ldots$ (program \neq logical variable)

Not intended: $\quad \Rightarrow\langle\ldots$..... $\rangle \phi$ (Validity of sequents:
quantification over all states)

As previous: $\quad \forall T i_{0} ;\left(i_{0} \doteq i \rightarrow\langle\ldots\right.$..... $\left.\rangle \phi\right)$
\square
Use explicit construct to record values in current state
Update

Quantifying over Program Variables

How to express correctness for any initial value of program variable？

Not allowed：$\quad \forall T$ i；〈．．．i．．．．〉 ϕ （program \neq logical variable）

Not intended：$\quad \Rightarrow\langle$ ．．．．i．．．〉 ϕ（Validity of sequents： quantification over all states）

Use explicit construct to record values in current state
Undate

Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: $\quad \forall T$ i; 〈...i....〉 ϕ (program \neq logical variable)

Not intended: $\quad \Rightarrow\langle\ldots$. . . . $\rangle \phi$ (Validity of sequents: quantification over all states)

Use explicit construct to record values in current state
Undate

Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: $\quad \forall T$ i; 〈...i....〉 ϕ (program \neq logical variable)

Not intended: $\Rightarrow\langle\ldots$. . . . $\rangle \phi$ (Validity of sequents: quantification over all states)

As previous:

$$
\forall T i_{0} ;\left(i_{0} \doteq i \rightarrow\langle\ldots i \ldots\rangle \phi\right)
$$

Quantifying over Program Variables

How to express correctness for any initial value of program variable？

Not allowed：$\quad \forall T$ i；〈．．．i．．．．〉 ϕ （program \neq logical variable）

Not intended：$\quad \Rightarrow\langle\ldots$ ．．．．$\rangle \phi$（Validity of sequents： quantification over all states）

As previous：$\quad \forall T i_{0} ;\left(i_{0} \doteq i \rightarrow\langle\ldots i \ldots\rangle \phi\right)$

Solution

Use explicit construct to record values in current state
Update $\quad \forall T i_{0} ;\left(\left\{i:=i_{0}\right\}\langle\ldots i \ldots\rangle \phi\right)$

Explicit State Updates

Updates specify computation state where formula is evaluated

Definition (Syntax of Updates)

If v is program variable, t FOL term type-compatible with v ,
t^{\prime} any FOL term, and ϕ any DL formula, then

- $\{\mathrm{v}:=t\} t^{\prime}$ is DL term
- $\{\mathrm{v}:=t\} \phi$ is DL formula

Definition (Semantics of Updates)

State s interprets non-rigid symbols f with $\mathcal{I}_{s}(f)$ β variable assignment for logical variables in t
$\rho(\{\mathrm{v}:=t\})(s)=s^{\prime}$ where s^{\prime} identical to s except
$\mathcal{I}_{s^{\prime}}(x)=v a l_{s, \beta}(t)$

Explicit State Updates Cont'd

Facts about updates

- Update semantics identical to assignment
- Value of update depends on logical variables in t :
- Updates as "lazy" assignments (no term substitution done)
- Updates are not assignments: right-hand side is FOL term $\{\mathrm{x}:=n\} \phi$ cannot be turned into assignment (n logical variable)
$\langle x=i++;\rangle \phi$ cannot directly be turned into update
- Updates are not equations: change value of non-rigid terms
- KeY simplifies and applies (if possible) updates automatically.

Assignment Rule Using Updates

Symbolic execution of assignment using updates

$$
\text { assign } \frac{\Gamma \Longrightarrow\{\mathrm{x}:=t\}\langle\text { rest }\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\mathrm{x}=\mathrm{t} ; \text { rest }\rangle \phi, \Delta}
$$

- Avoids renaming of program variables
- Works as long as t has no side effects (ok in simple DL)
- Special cases for $\mathrm{x}=t_{1}+t_{2}$, etc.

Demo
swap.key

Example Proof

```
Example
\programVariables
    int x;
}
\problem {
    (\exists int y;
        ({x := y}\<{while (x > 0) {x= x-1;}}\> x=0 ))
}
Intuitive Meaning? Satisfiable? Valid?
```


Demo

term.key

What to do when we cannot determine a concrete loop bound?

Example Proof

```
Example
\programVariables {
    int x;
}
\problem {
    (\exists int y;
        ({x := y}\<{while (x > 0) {x= x-1;}}\> x=0 ))
}
Intuitive Meaning? Satisfiable? Valid?
```


Demo

```
term.key
```

What to do when we cannot determine a concrete loop bound?

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

$$
\text { int } x ; \text { int } y ; x=x+y ; y=x-y ; x=x-y \text {; }
$$

yields:

$$
\{\mathrm{x}:=\mathrm{x}+\mathrm{y}\}\{\mathrm{y}:=\mathrm{x}-\mathrm{y}\}\{\mathrm{x}:=\mathrm{x}-\mathrm{y}\}
$$

Need to compose three sequential state changes into a single one!

Parallel Updates Cont'd

Definition (Parallel Update)

A parallel update is expression of the form
$\left\{I_{1}:=v_{1}\|\cdots\| I_{n}:=v_{n}\right\}$ where each $\left\{I_{i}:=v_{i}\right\}$ is simple update

- All v_{i} computed in old state before update is applied
- Updates of all locations l_{i} executed simultaneously
- Upon conflict $l_{i}=l_{j}, v_{i} \neq v_{j}$ later update $(\max \{i, j\})$ wins

Parallel Updates Cont'd

Definition (Parallel Update)

A parallel update is expression of the form
$\left\{I_{1}:=v_{1}\|\cdots\| I_{n}:=v_{n}\right\}$ where each $\left\{I_{i}:=v_{i}\right\}$ is simple update

- All v_{i} computed in old state before update is applied
- Updates of all locations l_{i} executed simultaneously
- Upon conflict $\quad l_{i}=l_{j}, v_{i} \neq v_{j} \quad$ later update $(\max \{i, j\})$ wins

Definition (Composition Sequential Updates/Conflict Resolution)

$$
\begin{aligned}
& \left\{I_{1}:=r_{1}\right\}\left\{I_{2}:=r_{2}\right\}=\left\{I_{1}:=r_{1} \| I_{2}:=\left\{I_{1}:=r_{1}\right\} r_{2}\right\} \\
& \left\{I_{1}:=v_{1}\|\cdots\| I_{n}:=v_{n}\right\} \mathrm{x}= \begin{cases}\mathrm{x} & \text { if } \mathrm{x} \notin\left\{I_{1}, \ldots, I_{n}\right\} \\
v_{k} & \text { if } \mathrm{x}=I_{k}, \mathrm{x} \notin\left\{I_{k+1}, \ldots, I_{n}\right\}\end{cases}
\end{aligned}
$$

Parallel Updates Cont'd

Example

$$
\begin{aligned}
& (\{x:=x+y\}\{y:=x-y\})\{x:=x-y\}= \\
& \{x:=x+y| | y:=(x+y)-y\}\{x:=x-y\}= \\
& \{x:=x+y| | y:=(x+y)-y| | x:=(x+y)-((x+y)-y)\}= \\
& \{x:=x+y| | y:=x| | x:=y\}= \\
& \{y:=x| | x:=y\}
\end{aligned}
$$

KeY automatically deletes overwritten (unnecessary) updates

Demo

swap.key

Parallel updates to store intermediate state of symbolic computation

Parallel Updates Cont'd

Example

$$
\begin{aligned}
& (\{x:=x+y\}\{y:=x-y\})\{x:=x-y\}= \\
& \{x:=x+y| | y:=(x+y)-y\}\{x:=x-y\}= \\
& \{x:=x+y| | y:=(x+y)-y| | x:=(x+y)-((x+y)-y)\}= \\
& \{x:=x+y| | y:=x| | x:=y\}= \\
& \{y:=x| | x:=y\}
\end{aligned}
$$

KeY automatically deletes overwritten (unnecessary) updates

Demo

swap.key

Parallel updates to store intermediate state of symbolic computation

A Warning

First-order rules that substitute arbitrary terms

$$
\begin{gathered}
\exists-\text { right } \frac{\Gamma \Rightarrow\left[x / t^{\prime}\right] \phi, \exists T x ; \phi, \Delta}{\Gamma \Rightarrow \exists T x ; \phi, \Delta} \quad \forall-\text { left } \frac{\Gamma, \forall T x ; \phi,\left[x / t^{\prime}\right] \phi \Rightarrow \Delta}{\Gamma, \forall T x ; \phi \Rightarrow \Delta} \\
\text { applyEq } \frac{\Gamma, t \doteq t^{\prime},\left[t / t^{\prime}\right] \psi \Rightarrow\left[t / t^{\prime}\right] \phi, \Delta}{\Gamma, t \doteq t^{\prime}, \psi \Rightarrow \phi, \Delta}
\end{gathered}
$$

t, t^{\prime} must be rigid, because all occurrences must have the same value

Example

$$
\begin{gathered}
\Gamma, \mathrm{i} \doteq 0 \rightarrow\langle i++\rangle \mathrm{i} \doteq 0 \Rightarrow \Delta \\
\Gamma, \forall T x ;(x \doteq 0 \rightarrow\langle i++\rangle x \doteq 0) \Rightarrow \Delta
\end{gathered}
$$

Logically valid formula would result in unsatisfiable antecedent!

