

Specification & Formal Analysis of Java Programs Functional Verification of Java Programs

Prof. Dr. Bernhard Beckert | ADAPT 2010

KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

KIT - University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

- Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula then $\begin{cases} \langle p \rangle \phi \\ [p] \phi \end{cases}$ is a DL formula
- DL formulas closed under FOL quantifiers and connectives
- Program variables are flexible *constants*: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested

Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

- Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula then $\begin{cases} \langle p \rangle \phi \\ [p] \phi \end{cases}$ is a DL formula
- DL formulas closed under FOL quantifiers and connectives
- Program variables are flexible *constants*: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested

Example (Well-formed? If yes, under which signature?)

• $\forall \texttt{int } y; ((\langle x = 1; \rangle x \doteq y) \iff (\langle x = 1*1; \rangle x \doteq y))$

Well-formed if FSym_{nr} contains **int** x;

 $\blacksquare \exists int x; [x = 1;](x \doteq 1)$

Not well-formed, because logical variable occurs in program

\{x = 1; \) ([while (true) {};]false)
Well-formed if FSym_{nr} contains int x;
program formulas can be nested

3/23

Example (Well-formed? If yes, under which signature?)

• $\forall int y; ((\langle x = 1; \rangle x \doteq y) \iff (\langle x = 1*1; \rangle x \doteq y))$ Well-formed if FSym_n contains int x;

■
$$\exists int x; [x = 1;](x \doteq 1)$$

Not well-formed, because logical variable occurs in program

\(x = 1;)([while (true) {};]false)
Well-formed if FSym_{nr} contains int x;
program formulas can be nested

3/23

Example (Well-formed? If yes, under which signature?)

• $\forall int y; ((\langle x = 1; \rangle x \doteq y) \iff (\langle x = 1*1; \rangle x \doteq y))$ Well-formed if FSym_{pr} contains int x;

■
$$\exists int x; [x = 1;](x \doteq 1)$$

Not well-formed, because logical variable occurs in program

\{x = 1; \([while (true) {};]false)
Well-formed if FSym_{nr} contains int x;
program formulas can be nested

3/23

Example (Well-formed? If yes, under which signature?)

• $\forall int y; ((\langle x = 1; \rangle x \doteq y) \iff (\langle x = 1*1; \rangle x \doteq y))$ Well-formed if FSym_n contains int x;

■
$$\exists int x; [x = 1;](x \doteq 1)$$

Not well-formed, because logical variable occurs in program

Example (Well-formed? If yes, under which signature?)

• $\forall int y; ((\langle x = 1; \rangle x \doteq y) \iff (\langle x = 1*1; \rangle x \doteq y))$ Well-formed if FSym_n contains int x;

■
$$\exists int x; [x = 1;](x \doteq 1)$$

Not well-formed, because logical variable occurs in program

Example (Well-formed? If yes, under which signature?)

• $\forall int y; ((\langle x = 1; \rangle x \doteq y) \iff (\langle x = 1*1; \rangle x \doteq y))$ Well-formed if FSym_n contains int x;

■
$$\exists int x; [x = 1;](x \doteq 1)$$

Not well-formed, because logical variable occurs in program

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

- $s, \beta \models \langle p \rangle \phi$ iff $\rho(p)(s), \beta \models \phi$ and $\rho(p)(s)$ is defined
 - $\mathbf p$ *terminates* and ϕ is true in the final state after execution
- $s, \beta \models [p]\phi$ iff $\rho(p)(s), \beta \models \phi$ whenever $\rho(p)(s)$ is defined

If p terminates then ϕ is true in the final state after execution

Program Correctness

Definition (Notions of Correctness)

- If $\boldsymbol{s}, \beta \models \langle p \rangle \phi$ then
 - p *totally correct* (with respect to ϕ) in s, β
- If s, β ⊨ [p]φ then
 p partially correct (with respect to φ) in s, β
- Duality (p)φ iff ![p]! φ
 Exercise: justify this with help of semantic definitions
- Implication if (p)φ then [p]φ
 Total correctness implies partial correctness
 - converse is false
 - holds only for deterministic programs

Semantics of Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of program formulas where all logical variables occur bound

Recall: $s \models (\Gamma \Longrightarrow \Delta)$ iff $s \models (\phi_1 \& \cdots \& \phi_n) \implies (\psi_1 \mid \cdots \mid \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \Longrightarrow \Delta$ over program formulas is *valid* iff

 $s \models (\Gamma \Longrightarrow \Delta)$ in *all states* s

Consequence for program variables

Initial value of program variables implicitly "universally quantified"

Semantics of Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of program formulas where all logical variables occur bound

Recall: $s \models (\Gamma \Longrightarrow \Delta)$ iff $s \models (\phi_1 \& \cdots \& \phi_n) \implies (\psi_1 \mid \cdots \mid \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \Longrightarrow \Delta$ over program formulas is *valid* iff

 $s \models (\Gamma \Longrightarrow \Delta)$ in *all states s*

Consequence for program variables

Initial value of program variables implicitly "universally quantified"

Initial States

Java initial states

KeY prover "starts" programs in initial states according to Java convention:

- Values of array entries initialized to default values: int [] to 0, etc.
- Static object initialization
- No objects created

How to restrict validity to set of *initial states* $S_0 \subseteq S$?

1 Design closed FOL formula Init with $s \models \text{Init}$ iff $s \in S_0$

2 Use sequent Γ , Init $\Rightarrow \Delta$

Operational Semantics of Programs

In labelled transition system $K = (S, \rho)$: $\rho : \Pi \rightarrow (S \rightarrow S)$ is *operational semantics* of programs $p \in \Pi$

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)

States *s* interpret non-rigid symbols *f* with $\mathcal{I}_{s}(f)$

 $\rho(x=t)(s) = s'$ where s' identical to s except $\mathcal{I}_{s'}(x) = val_s(t)$

Very tedious task to define ρ for Java ... \Rightarrow go directly to calculus for program formulas!

Operational Semantics of Programs

In labelled transition system $K = (S, \rho)$: $\rho : \Pi \rightarrow (S \rightarrow S)$ is *operational semantics* of programs $p \in \Pi$

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)

States *s* interpret non-rigid symbols *f* with $\mathcal{I}_{s}(f)$

 $\rho(x=t)(s) = s'$ where s' identical to s except $\mathcal{I}_{s'}(x) = val_s(t)$

Very tedious task to define ρ for Java ... \Rightarrow go directly to calculus for program formulas!

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula What is "top-level" in a sequential program p; q; r?

Symbolic Execution (King, late 60s)

- Follow the natural control flow when analysing a program
- Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

int x; **int** y; x=x+y; y=x-y; x=x-y;

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula What is "top-level" in a sequential program p; q; r?

Symbolic Execution (King, late 60s)

- Follow the natural control flow when analysing a program
- Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

int x; **int** y; x=x+y; y=x-y; x=x-y;

General form of rule conclusions in symbolic execution calculus

 $\langle \text{stmt; rest} \rangle \phi$, [stmt; rest] ϕ

- Rules must symbolically execute first statement
- Repeated application of rules in a proof corresponds to symbolic program execution

Symbolic execution of assignment

assign
$$\frac{\{\mathbf{x}/\mathbf{x}_{old}\}\Gamma, \ \mathbf{x} \doteq \{\mathbf{x}/\mathbf{x}_{old}\}t \implies \langle \text{rest} \rangle \phi, \ \{\mathbf{x}/\mathbf{x}_{old}\}\Delta}{\Gamma \Longrightarrow \langle \mathbf{x} = \texttt{t}; \ \text{rest} \rangle \phi, \Delta}$$

 x_{old} new program variable that "rescues" old value of x

Example

Conclusion matching: $\{x/x\}, \{t/x+y\}, \{rest/y=x-y; x=x-y;\}, \{\phi/(x \doteq y_0 \& y \doteq x_0)\}, \{\Gamma/x \doteq x_0, y \doteq y_0\}, \{\Delta/\emptyset\}$

 $\mathbf{x}_{old} \doteq \mathbf{X}_0, \, \mathbf{y} \doteq \mathbf{y}_0, \, \mathbf{x} \doteq \mathbf{x}_{old} + \mathbf{y} \Longrightarrow \langle \mathbf{y} = \mathbf{x} - \mathbf{y} \, ; \, \mathbf{x} = \mathbf{x} - \mathbf{y} \, ; \, \langle \mathbf{x} \doteq \mathbf{y}_0 \, \& \, \mathbf{y} \doteq \mathbf{x}_0 \big)$

 $x \doteq x_0, y \doteq y_0 \Longrightarrow \langle x = x + y; y = x - y; x = x - y; \rangle (x \doteq y_0 \& y \doteq x_0)$

Symbolic execution of assignment

assign
$$\frac{\{\mathbf{x}/\mathbf{x}_{old}\}\Gamma, \ \mathbf{x} \doteq \{\mathbf{x}/\mathbf{x}_{old}\}t \implies \langle \text{rest} \rangle \phi, \ \{\mathbf{x}/\mathbf{x}_{old}\}\Delta}{\Gamma \Longrightarrow \langle \mathbf{x} = \texttt{t}; \ \text{rest} \rangle \phi, \Delta}$$

 x_{old} new program variable that "rescues" old value of x

Example

Conclusion matching:
$$\{x/x\}, \{t/x+y\}, \{rest/y=x-y; x=x-y;\}, \{\phi/(x \doteq y_0 \& y \doteq x_0)\}, \{\Gamma/x \doteq x_0, y \doteq y_0\}, \{\Delta/\emptyset\}$$

$$\frac{\mathbf{x}_{old} \doteq \mathbf{x}_0, \, \mathbf{y} \doteq \mathbf{y}_0, \, \mathbf{x} \doteq \mathbf{x}_{old} + \mathbf{y} \Longrightarrow \langle \mathbf{y} = \mathbf{x} - \mathbf{y}; \, \mathbf{x} = \mathbf{x} - \mathbf{y}; \rangle (\mathbf{x} \doteq \mathbf{y}_0 \ \& \, \mathbf{y} \doteq \mathbf{x}_0)}{\mathbf{x} \doteq \mathbf{x}_0, \, \mathbf{y} \doteq \mathbf{y}_0 \Longrightarrow \langle \mathbf{x} = \mathbf{x} + \mathbf{y}; \, \mathbf{y} = \mathbf{x} - \mathbf{y}; \, \mathbf{x} = \mathbf{x} - \mathbf{y}; \rangle (\mathbf{x} \doteq \mathbf{y}_0 \ \& \, \mathbf{y} \doteq \mathbf{x}_0)}$$

Proving Partial Correctness

Partial correctness assertion

If program ${\tt p}$ is started in a state satisfying Pre and terminates, then its final state satisfies Post

In Hoare logic $\{Pre\} p \{Post\}$ In DL Pre $\rightarrow [p]Post$

(Pre, Post must be FOL) (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

```
\programVariables
```

Proving Partial Correctness

Partial correctness assertion

If program ${\rm p}$ is started in a state satisfying Pre and terminates, then its final state satisfies Post

In Hoare logic {Pre} p {Post} In DL Pre -> [p]Post (Pre, Post must be FOL)

(Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

```
\programVariables {
```

```
int x; int y; }
```


Example

$$\forall T y; ((\langle p \rangle x \doteq y) \iff (\langle q \rangle x \doteq y))$$

Not valid in general

Programs ${\rm p}$ behave ${\rm q}$ equivalently on variable 7 ${\rm x}$

Example

$$\exists T y; (x \doteq y \rightarrow \langle p \rangle true)$$

Not valid in general

Example

$$\forall T y; ((\langle p \rangle x \doteq y) \iff (\langle q \rangle x \doteq y))$$

Not valid in general

Programs ${\rm p}$ behave ${\rm q}$ equivalently on variable 7 ${\rm x}$

Example

$$\exists T y; (x \doteq y \rightarrow \langle p \rangle true)$$

Not valid in general

Example

$$\forall T y; ((\langle p \rangle x \doteq y) \iff (\langle q \rangle x \doteq y))$$

Not valid in general

Programs ${\rm p}$ behave ${\rm q}$ equivalently on variable 7 ${\rm x}$

Example

$$\exists T y; (x \doteq y \rightarrow \langle p \rangle true)$$

Not valid in general

Example

$$\forall T y; ((\langle p \rangle x \doteq y) \iff (\langle q \rangle x \doteq y))$$

Not valid in general

Programs ${\rm p}$ behave ${\rm q}$ equivalently on variable 7 ${\rm x}$

Example

$$\exists T y; (x \doteq y \rightarrow \langle p \rangle true)$$

Not valid in general

Symbolic execution of conditional

if
$$\frac{\Gamma, b \doteq true \Rightarrow \langle p; rest \rangle \phi, \Delta}{\Gamma \Rightarrow \langle if (b) \{ p \} else \{ q \} ; rest \rangle \phi, \Delta}$$

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind unwindLoop $\frac{\Gamma \Longrightarrow \langle \texttt{if} (\texttt{b}) \{ \texttt{p}; \texttt{while} (\texttt{b}) \texttt{p}\}; \texttt{r} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \texttt{while} (\texttt{b}) \{\texttt{p}\}; \texttt{r} \rangle \phi, \Delta}$

Symbolic execution of conditional

if
$$\frac{\Gamma, b \doteq true \Rightarrow \langle p; rest \rangle \phi, \Delta}{\Gamma \Rightarrow \langle if (b) \{ p \} else \{ q \} ; rest \rangle \phi, \Delta}$$

Symbolic execution must consider all possible execution branches

$$\begin{array}{l} \text{Symbolic execution of loops: unwind} \\ \\ \text{unwindLoop} \ \hline \frac{\Gamma \Longrightarrow \langle \texttt{if} \ (\texttt{b}) \ \{ \texttt{p} \texttt{; while} \ (\texttt{b}) \ \texttt{p} \texttt{\} \texttt{; } r} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \texttt{while} \ (\texttt{b}) \ \{\texttt{p} \texttt{\} \texttt{; } r} \rangle \phi, \Delta} \end{array}$$

How to express correctness for any initial value of program variable?

Not allowed: $\forall T i; \langle \dots i \dots \rangle \phi$ (program \neq logical variable)

Not intended: $\Rightarrow \langle \dots i \dots \rangle \phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall T i_0; (i_0 \doteq i \rightarrow \langle \dots i \dots \rangle \phi)$

Solution

Use explicit construct to record values in current state

Update $\forall T i_0; (\{i := i_0\} \langle \dots i \dots \rangle \phi)$

How to express correctness for any initial value of program variable?

Not allowed: $\forall T i; \langle \dots i \dots \rangle \phi$ (program \neq logical variable)

Not intended: $\Rightarrow \langle \dots i \dots \rangle \phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall T i_0; (i_0 \doteq i \rightarrow \langle \dots i \dots \rangle \phi)$

Solution

Use explicit construct to record values in current state

Update $\forall T i_0; (\{i := i_0\} \langle \dots i \dots \rangle \phi)$

How to express correctness for any initial value of program variable?

Not allowed: $\forall T i; \langle \dots i \dots \rangle \phi$ (program \neq logical variable)

Not intended: $\Rightarrow \langle \dots i \dots \rangle \phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall T i_0; (i_0 \doteq i \rightarrow \langle \dots \rangle \phi)$

Solution

Use explicit construct to record values in current state

Update $\forall T i_0; (\{i := i_0\} \langle \dots i \dots \rangle \phi)$

How to express correctness for any initial value of program variable?

Not allowed: $\forall T i; \langle \dots i \dots \rangle \phi$ (program \neq logical variable)

Not intended: $\Rightarrow \langle \dots i \dots \rangle \phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall T i_0; (i_0 \doteq i \rightarrow \langle \dots i \dots \rangle \phi)$

Solution

Use explicit construct to record values in current state

Update $\forall T i_0; (\{i := i_0\} \langle \dots i \dots \rangle \phi)$

How to express correctness for any initial value of program variable?

Not allowed: $\forall T i; \langle \dots i \dots \rangle \phi$ (program \neq logical variable)

Not intended: $\Rightarrow \langle \dots i \dots \rangle \phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall T i_0; (i_0 \doteq i \rightarrow \langle \dots i \dots \rangle \phi)$

Solution

Use explicit construct to record values in *current* state

Update $\forall T i_0; (\{i := i_0\} \langle \dots i \dots \rangle \phi)$

Explicit State Updates

Updates specify computation state where formula is evaluated

Definition (Syntax of Updates)

If v is program variable, *t* FOL term type-compatible with v, *t'* any FOL term, and ϕ any DL formula, then

{v := t}t' is DL term

• $\{v := t\}\phi$ is DL formula

Definition (Semantics of Updates)

State *s* interprets non-rigid symbols *f* with $\mathcal{I}_s(f)$ β variable assignment for logical variables in *t*

 $ho(\{v := t\})(s) = s'$ where s' identical to s except $\mathcal{I}_{s'}(x) = val_{s,\beta}(t)$

Explicit State Updates Cont'd

Facts about updates $\{v := t\}$

- Update semantics identical to assignment
- Value of update depends on logical variables in *t*:
- Updates as "lazy" assignments (no term substitution done)
- Updates are not assignments: right-hand side is FOL term

 ${x := n}\phi$ cannot be turned into assignment (*n* logical variable)

 ${\tt (x=i++;)}\phi$ cannot directly be turned into update

- Updates are not equations: change value of non-rigid terms
- KeY simplifies and applies (if possible) updates automatically.

Assignment Rule Using Updates

Symbolic execution of assignment using updates

assign
$$\frac{\Gamma \Longrightarrow \{x := t\} \langle \text{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle x = t; \text{ rest} \rangle \phi, \Delta}$$

- Avoids renaming of program variables
- Works as long as t has no side effects (ok in simple DL)
- Special cases for $x = t_1 + t_2$, etc.

Demo

swap.key

Example Proof

Example

```
\programVariables {
    int x;
}
\problem {
      (\exists int y;
        ({x := y}\<{while (x > 0) {x = x-1;}}\> x=0 ))
}
Intuitive Meaning? Satisfiable? Valid?
```

Demo

term.key

What to do when we *cannot* determine a concrete loop bound?

Example Proof

Example

```
\programVariables {
    int x;
}
\problem {
      (\exists int y;
        ({x := y}\<{while (x > 0) {x = x-1;}}\> x=0 ))
}
Intuitive Meaning? Satisfiable? Valid?
```

Demo

term.key

What to do when we cannot determine a concrete loop bound?

How to apply updates on updates?

Example

Symbolic execution of

int x; **int** y; x=x+y; y=x-y; x=x-y;

yields:

 $\{x := x+y\} \{y := x-y\} \{x := x-y\}$

Need to compose three sequential state changes into a single one!

Definition (Parallel Update)

A parallel update is expression of the form $\{I_1 := v_1 || \cdots || I_n := v_n\}$ where each $\{I_i := v_i\}$ is simple update

- All v_i computed in old state before update is applied
- Updates of all locations *l_i* executed simultaneously
- Upon *conflict* $I_i = I_j$, $v_i \neq v_j$ later update $(\max\{i, j\})$ wins

Definition (Composition Sequential Updates/Conflict Resolution) $\{l_1 := r_1\}\{l_2 := r_2\} = \{l_1 := r_1||l_2 := \{l_1 := r_1\}r_2\}$ $\{l_1 := v_1||\cdots||l_n := v_n\}x = \begin{cases} x & \text{if } x \notin \{l_1, \dots, l_n\}\\ v_k & \text{if } x = l_k, x \notin \{l_{k+1}, \dots, l_n\} \end{cases}$

Definition (Parallel Update)

A parallel update is expression of the form $\{I_1 := v_1 || \cdots || I_n := v_n\}$ where each $\{I_i := v_i\}$ is simple update

- All v_i computed in old state before update is applied
- Updates of all locations *l_i* executed simultaneously
- Upon *conflict* $I_i = I_j$, $v_i \neq v_j$ later update $(\max\{i, j\})$ wins

Definition (Composition Sequential Updates/Conflict Resolution) $\{l_1 := r_1\}\{l_2 := r_2\} = \{l_1 := r_1|l_2 := \{l_1 := r_1\}r_2\}$ $\{l_1 := v_1||\cdots||l_n := v_n\}x = \begin{cases} x & \text{if } x \notin \{l_1, \dots, l_n\}\\ v_k & \text{if } x = l_k, x \notin \{l_{k+1}, \dots, l_n\} \end{cases}$

Example

$$(\{x := x+y\} \{y := x-y\}) \{x := x-y\} = \{x := x+y | | y := (x+y)-y\} \{x := x-y\} = \{x := x+y | | y := (x+y)-y | | x := (x+y)-((x+y)-y)\} = \{x := x+y | | y := x | | x := y\} = \{y := x | | x := y\}$$

KeY automatically deletes overwritten (unnecessary) updates

Demo

swap.key

Parallel updates to store intermediate state of symbolic computation

Example

$$(\{x := x+y\} \{y := x-y\}) \{x := x-y\} = \{x := x+y | | y := (x+y)-y\} \{x := x-y\} = \{x := x+y | | y := (x+y)-y | | x := (x+y)-((x+y)-y)\} = \{x := x+y | | y := x | | x := y\} = \{y := x | | x := y\}$$

KeY automatically deletes overwritten (unnecessary) updates

Demo

swap.key

Parallel updates to store intermediate state of symbolic computation

A Warning

First-order rules that substitute arbitrary terms

$$\exists -\mathsf{right} \ \frac{\Gamma \Longrightarrow [x/t'] \phi, \ \exists \ T \ x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \ T \ x; \ \phi, \Delta} \quad \forall -\mathsf{left} \ \frac{\Gamma, \forall \ T \ x; \ \phi, \ [x/t'] \phi \Longrightarrow \Delta}{\Gamma, \forall \ T \ x; \ \phi \Longrightarrow \Delta}$$

applyEq
$$\frac{\Gamma, t \doteq t', [t/t'] \psi \Longrightarrow [t/t'] \phi, \Delta}{\Gamma, t \doteq t', \psi \Longrightarrow \phi, \Delta}$$

t, t' must be *rigid*, because all occurrences must have the same value

Example

$$\mathsf{\Gamma}, \mathtt{i} \doteq \mathbf{0} \Longrightarrow \langle \mathtt{i} {\scriptstyle + +} \rangle \mathtt{i} \doteq \mathbf{0} \Longrightarrow \Delta$$

$$\Gamma, \forall \ T \ x; \ (x \doteq 0 \mathrel{\longrightarrow} \langle \texttt{i} + +
angle x \doteq 0) \Longrightarrow \Delta$$

Logically valid formula would result in unsatisfiable antecedent! KeY prohibits unsound substitutions Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 23/23