AT

Karlsruhe Institute of Technology

Specification & Formal Analysis of Java Programs
Functional Verification of Java Programs

Prof. Dr. Bernhard Beckert | ADAPT 2010

KIT — INSTITUT FOUR THEORETISCHE INFORMATIK

KIT = University of the State of Badk and National Large le Research Center of the Helmholtz Association

Dynamic Logic Formulas (Simple AT
Version) FS

Definition (Dynamic Logic Formulas (DL Formulas))
m Each FOL formula is a DL formula

a If pis a program and ¢ a DL formula then {Eg]if} isa DL

formula
m DL formulas closed under FOL quantifiers and connectives

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 2/23

Dynamic Logic Formulas (Simple AT
Version) FewS

Definition (Dynamic Logic Formulas (DL Formulas))
m Each FOL formula is a DL formula

a If pis a program and ¢ a DL formula then {ng(f} isa DL

formula
m DL formulas closed under FOL quantifiers and connectives

m Program variables are flexible constants: never bound in
quantifiers

a Program variables need not be declared or initialized in
program

m Programs contain no logical variables
a Modalities can be arbitrarily nested

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 2/23

I Dynamic Logic Formulas Cont'd AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Example (Well-formed? If yes, under which signature?)
mVinty; ((x = 1;)x=y) <> ((x = 1x1;)x=y))

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

I Dynamic Logic Formulas Cont'd AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Example (Well-formed? If yes, under which signature?)
mVinty; ((x = 1;)x=y) <> ((x = 1x1;)x=y))
Well-formed if FSym,,, contains int x;

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

I Dynamic Logic Formulas Cont'd AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Example (Well-formed? If yes, under which signature?)
mVinty; ((x = 1;)x=y) <> ((x = 1x1;)x=y))
Well-formed if FSym,,, contains int x;
m dint x; [x = 1;](x=1)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

I Dynamic Logic Formulas Cont'd AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Example (Well-formed? If yes, under which signature?)
mVinty; ((x = 1;)x=y) <> ((x = 1x1;)x=y))
Well-formed if FSym,,, contains int x;
m dint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in
program

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

I Dynamic Logic Formulas Cont'd AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Example (Well-formed? If yes, under which signature?)
mVinty; ((x = 1;)x=y) <> ((x = 1x1;)x=y))
Well-formed if FSym,,, contains int x;
m dint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in
program
m (x = 1;)([while (true) {};|false)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

I Dynamic Logic Formulas Cont'd AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Example (Well-formed? If yes, under which signature?)
mVinty; ((x = 1;)x=y) <> ((x = 1x1;)x=y))
Well-formed if FSym,,, contains int x;
m dint x; [x = 1;](x=1)
Not well-formed, because logical variable occurs in
program
m (x = 1;)([while (true) {};|false)

Well-formed if FSym,,, contains int x;
program formulas can be nested

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 3/23

Semantic Evaluation of Program QAT
Formulas QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

Definition (Validity Relation for Program Formulas)
w s, B (e iff p(p)(s),B F ¢ andp(p)(s) is defined
p terminates and ¢ is true in the final state after execution

w s, B ple iff p(p)(s). B = ¢ whenever p(p)(s) is
defined

If p terminates then ¢ is true in the final state after
execution

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 4/23

I Program Correctness AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Notions of Correctness)
m Ifs,8 | (p)¢o then
p totally correct (with respect to ¢) in s, 3

a If 5,8 | [p]o then
p partially correct (with respect to ¢) in s, 3

w Duality (p)¢ iff l[p]le
Exercise: justify this with help of semantic definitions

w Implication if (p)¢ then [plo
Total correctness implies partial correctness

a converse is false
m holds only for deterministic programs

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 5/23

I Semantics of Sequents ﬂ(l]‘
F={¢1,...,6n} and A = {1,...,1¥m} sets of program

formulas

where all logical variables occur bound

Recal: sE= (= A)iffsE(¢1 & - & ¢n) — (V1] | ¥m)
Define semantics of DL sequents identical to semantics of FOL
sequents

Definition (Validity of Sequents over Program Formulas)
A sequent ' = A over program formulas is valid iff

sE (= A)in all states s

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 6/23

I Semantics of Sequents AT

MN={¢1,...,6n} and A = {t1,...,9¥m} sets of program
formulas

where all logical variables occur bound

Recall: s|= (T = A)iff s = (1 & --- & ¢n) = (V1 |-+ | ¥m)

Define semantics of DL sequents identical to semantics of FOL
sequents

Definition (Validity of Sequents over Program Formulas)
A sequent ' = A over program formulas is valid iff

sE (= A)in all states s

Consequence for program variables

Initial value of program variables implicitly “universally

quantified”
Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 6/23

I Initial States

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Java initial states

KeY prover “starts” programs in initial states according to Java

convention:

m Values of array entries initialized to default values: int []

to 0, etc.
m Static object initialization
a No objects created

How to restrict validity to set of initial states Sy C S ?

@ Design closed FOL formula Init with
S |= Init iff se Sy

@ Use sequent I, Init = A

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010

7/23

I Operational Semantics of Programs AT

In labelled transition system K = (S, p):
p: N — (S— S)is operational semantics of programs p € I

How is p defined for concrete programs and states? y

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 8/23

I Operational Semantics of Programs T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

In labelled transition system K = (S, p):
p: N — (S— S)is operational semantics of programs p € I

How is p defined for concrete programs and states? |

Example (Operational semantics of assignment)
States s interpret non-rigid symbols f with Zs(f)
p(x=t)(s) = s’ where s’ identical to s except Zs (x) = vals(t)

Very tedious task to define p for Java ...
= go directly to calculus for program formulas!

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 8/23

I Symbolic Execution of Programs AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential programp; g; r ?

Symbolic Execution (King, late 60s)
a Follow the natural control flow when analysing a program

a Values of some variables unknown: symbolic state
representation

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 9/23

I Symbolic Execution of Programs AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Sequent calculus decomposes top-level operator in formula
What is “top-level” in a sequential programp; g; r ?

Symbolic Execution (King, late 60s)
a Follow the natural control flow when analysing a program

a Values of some variables unknown: symbolic state
representation

Example
Compute the final state after termination of

int x; int y; x=x+ty; y=X-y; X=X-Y;

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 9/23

Symbolic Execution of Programs AT
Contd = TRARA

General form of rule conclusions in symbolic execution
calculus

(stmt; rest)®, [stmt; rest]o

a Rules must symbolically execute first statement

m Repeated application of rules in a proof corresponds to
symbolic program execution

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 10/23

Symbolic Execution of Programs AT
Contd = TRARA

Symbolic execution of assignment

{x/%00}T, x = {x/30ig}t = (rest)o, {x/xog}A
= (x = t; rest)p,A

assign

%ol NEeW program variable that “rescues” old value of x

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 11/23

Symbolic Execution of Programs AT
Contd = TRARA

Symbolic execution of assignment

{x/%00}T, x = {x/30ig}t = (rest)o, {x/xog}A
= (x = t; rest)p,A

assign

%ol NEeW program variable that “rescues” old value of x

Example

Conclusion matching: {x/x}, {t/x+v},
{rest/y=x-y; x=x-y; },{6/(x=Yo &y = X0)},
{I/x = X0, v = Yo}, {A/0}

Xold = X0, Y = Y0, X = Xolg+y = (y=x-y; x=x-y;)(x =)o &y =Xp)

X=X, V= Yo = (x=x+y; y=x-y; x=x-y;)(x=)yo&y=Xo)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 11/23

I Proving Partial Correctness IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates,
then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
InDL Pre — [p]Post (Pre, Post any DL formula)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 12/23

I Proving Partial Correctness IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Partial correctness assertion

If program p is started in a state satisfying Pre and terminates,

then its final state satisfies Post

In Hoare logic {Pre} p {Post} (Pre, Post must be FOL)
InDL Pre — [p]Post (Pre, Post any DL formula)

Example (In KeY Syntax, Demo automatic proof)

\programvariables ({
int x; int y; }

\problem {
(\Mforall int x0; \forall int y0; ((x=x0 & y=y0) —>
\<{x=xty; y=x-y; x=x-y; }\>(x=y0 & y=x0)))
}

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 12/23

I More Properties AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

VTy ((p)x=y) <> ((@)x=Y))

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

I More Properties AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Example

YTy ((P)x =y) <> ((@)x=Y))
Not valid in general
Programs p behave g equivalently on variable T x

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

I More Properties AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Example

YTy ((P)x =y) <> ((@)x=Y))
Not valid in general
Programs p behave g equivalently on variable T x

Example
ATy, (x=y — (p)true)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

I More Properties AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Example

YTy ((p)x=y) <> ((@)x=Y))

Not valid in general

Programs p behave g equivalently on variable T x

Example
ATy, (x=y — (p)true)
Not valid in general

Program p terminates in all states where x has suitable initial
value

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 13/23

Symbolic Execution of Programs AT
Contd = TSRS

Symbolic execution of conditional
. b =true = (p; rest)p,A b= false = (g; rest)
|

= (if (b) { p } else { g } ; rest)p,A

Symbolic execution must consider all possible execution
branches

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 14/23

Symbolic Execution of Programs AT
Contd = TSRS

Symbolic execution of conditional
b =true = (p; rest)p,A b= false = (g; rest)

if

= (if (b) { p } else { g } ; rest)p,A

Symbolic execution must consider all possible execution
branches

Symbolic execution of loops: unwind

= (if (b) { p; while (b) p}; r)p,A
= (while (b) {p};)¢, A

unwindLoop

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 14/23

I Quantifying over Program Variables IT

How to express correctness for any initial value of program
variable?

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

I Quantifying over Program Variables IT

How to express correctness for any initial value of program
variable?

Not allowed: VT i, (...1i...0)0
(program = logical variable)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

I Quantifying over Program Variables AIT

How to express correctness for any initial value of program
variable?

Not allowed: VT i, (...1i...0)0
(program = logical variable)

Not intended: = (...1i...)¢ (Validity of sequents:
quantification over all states)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

I Quantifying over Program Variables AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

How to express correctness for any initial value of program
variable?

Not allowed: VT i, (...i...0)0
(program = logical variable)

Not intended: = (...1i...)¢ (Validity of sequents:
quantification over all states)

As previous: VT (=1 = (...1...)9)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

I Quantifying over Program Variables AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

How to express correctness for any initial value of program
variable?

Not allowed: VT i, (...i...0)0
(program = logical variable)

Notintended: = (...i...)¢ (Validity of sequents:
quantification over all states)

As previous: VTi; (b=1 — (...1...)9)

Solution
Use explicit construct to record values in current state

Update VT ip; ({1:=10}(...1...)9)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 15/23

I Explicit State Updates (T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Updates specify computation state where formula is evaluated |

Definition (Syntax of Updates)
If v is program variable, t FOL term type-compatible with v,
t" any FOL term, and ¢ any DL formula, then

m {v:=1{}tis DL term

m {v:=t}¢is DL formula

Definition (Semantics of Updates)

State s interprets non-rigid symbols f with Zs(f)
[variable assignment for logical variables in t
p({v :=t})(s) = s’ where s’ identical to s except
Ts(x) = vals g(t)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 16/23

I Explicit State Updates Cont'd IT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Facts about updates

m Update semantics identical to assignment

m Value of update depends on logical variables in t:

m Updates as “lazy” assignments (no term substitution done)

m Updates are not assignments: right-hand side is FOL term
{x := n}¢ cannot be turned into assignment (n logical
variable)
(x=1++;)¢ cannot directly be turned into update

a Updates are not equations: change value of non-rigid
terms

m KeY simplifies and applies (if possible) updates
automatically.

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 17/23

I Assignment Rule Using Updates AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Symbolic execution of assignment using updates

= {x:=t}{rest)o, A
= (x = t; rest)p,A

assign

a Avoids renaming of program variables
m Works as long as t has no side effects (ok in simple DL)
m Special cases for x =t + b, etc.

Demo
swap.key

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 18/23

I Example Proof KT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Example

\prograniVariables {

int x;
}
\problem ({

(\exists int y;

({x := y}\<{while (x > 0) {x = x-1;}}\> x=0))

}
Intuitive Meaning? Satisfiable? Valid?

Demo

term.key

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 19/23

I Example Proof AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Example

\prograniVariables {

int x;
}
\problem ({

(\exists int y;

({x := y}\<{while (x > 0) {x = x-1;}}\> x=0))

}
Intuitive Meaning? Satisfiable? Valid?

Demo

term.key

What to do when we cannot determine a concrete loop bound? |

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 19/23

I Parallel Updates

How to apply updates on updates? |

Symbolic execution of

int x; int y; x=xty; y=x-y; x=x-y;
yields:
{x 1= xty}{y := xy}{x = xv}

Need to compose three sequential state changes into a single
one!

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 20/23

I Parallel Updates Cont'd (T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Parallel Update)
A parallel update is expression of the form
{l :==w1]||---||In :== vn} where each {/; := v;} is simple update
a All v; computed in old state before update is applied
m Updates of all locations /; executed simultaneously
w Upon conflict I; = I;, vi # v; later update (max{/, })
wins

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 21/23

I Parallel Updates Cont'd AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Definition (Parallel Update)

A parallel update is expression of the form

{l :==w1]||---||In :== vn} where each {/; := v;} is simple update
a All v; computed in old state before update is applied
m Updates of all locations /; executed simultaneously

w Upon conflict I; = I;, vi # v; later update (max{/, })
wins

Definition (Composition Sequential Updates/Conflict

Resolution)
{th=nHk:=r} = {h:=nl|lk="_{h:=n}r}

{h=w||- ||l = va)x = { x ifxe{h,...,Ih}

Vi ifX:/k,Xg{lk_H,...,ln}

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 21/23

I Parallel Updates Cont'd T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

({x = xtyHy := xy}){x = 2y} =

{x i=xty || vy := (Xty)-y}H{x = xvy} =

{x i=xty ||y := (xty)-y || x := (xty)-((xty)-y) } =
{xi=xty || y:=x || x :=y} =

{y :=x || x :=y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
swap.key

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 22/23

I Parallel Updates Cont'd (T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

({x = xtyHy := xy}){x = 2y} =

{x i=xty || vy := (Xty)-y}H{x = xvy} =

{x i=xty ||y := (xty)-y || x := (xty)-((xty)-y) } =
{xi=xty || y:=x || x :=y} =

{y :=x || x :=y}

KeY automatically deletes overwritten (unnecessary) updates

Demo
swap.key

Parallel updates to store intermediate state of symbolic
computation

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 22/23

I A Warning T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

First-order rules that substitute arbitrary terms

r=[x/t]¢, 3T x; ¢, A rvTx; o [x/tg= A
3 right [x/t] ¢ ¢ . o, [x/t]¢

Fr=3Tx; ¢,A TVTx ¢= A
M=t [t/ = [t/t] ¢, A
Mt=t)= ¢ A

t, ¥ must be rigid, because all occurrences must have the same
value

applyEq

Example

MNi=0—=(i++y)i=0= A
MVTx; (x=0—= (i++)x=0) = A

Logically valid formula would result in unsatisfiable antecedent!

KeY brohibits 11nsouind substitiitions
Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 23/23

	Dynamic Logic
	Program Formulas
	Program Formula Valuation
	Correctness
	Operational Semantics
	Symbolic Execution
	Updates
	Parallel Updates
	Restrictions

