

Specification & Formal Analysis of Java Programs Functional Verification of Java Programs

Prof. Dr. Bernhard Beckert | ADAPT 2010

Dynamic Logic Formulas (Simple Version)

Definition (Dynamic Logic Formulas (DL Formulas))

- Each FOL formula is a DL formula
- If p is a program and ϕ a DL formula then $\left\{ \begin{pmatrix} p \end{pmatrix} \phi \\ [p] \phi \end{pmatrix}$ is a DL formula
- DL formulas closed under FOL quantifiers and connectives

- Program variables are flexible constants: never bound in quantifiers
- Program variables need not be declared or initialized in program
- Programs contain no logical variables
- Modalities can be arbitrarily nested

Dynamic Logic Formulas Cont'd

Example (Well-formed? If yes, under which signature?)

- \forall int y; $((\langle x = 1; \rangle x \doteq y) \iff (\langle x = 1*1; \rangle x \doteq y))$ Well-formed if $FSym_{pr}$ contains int x;
- ∃int X; [x = 1;](x = 1)
 Not well-formed, because logical variable occurs in program
- \(\times = 1; \) ([while (true) {};]false)
 Well-formed if FSym_{nr} contains int x;
 program formulas can be nested

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

- $s, \beta \models \langle p \rangle \phi$ iff $\rho(p)(s), \beta \models \phi$ and $\rho(p)(s)$ is defined p terminates and ϕ is true in the final state after execution
- $s, \beta \models [p]\phi$ iff $\rho(p)(s), \beta \models \phi$ whenever $\rho(p)(s)$ is defined

If p terminates then ϕ is true in the final state after execution

Program Correctness

Definition (Notions of Correctness)

- If $s, \beta \models \langle p \rangle \phi$ then p totally correct (with respect to ϕ) in s, β
- If $s, \beta \models [p]\phi$ then p partially correct (with respect to ϕ) in s, β
- Duality $\langle p \rangle \phi$ iff $![p]! \phi$ Exercise: justify this with help of semantic definitions
- *Implication* if $\langle p \rangle \phi$ then $[p] \phi$ Total correctness implies partial correctness
 - converse is false
 - holds only for deterministic programs

Semantics of Sequents

 $\Gamma = \{\phi_1, \dots, \phi_n\}$ and $\Delta = \{\psi_1, \dots, \psi_m\}$ sets of program formulas

where all logical variables occur bound

Recall:
$$s \models (\Gamma \Longrightarrow \Delta)$$
 iff $s \models (\phi_1 \& \cdots \& \phi_n) \implies (\psi_1 \mid \cdots \mid \psi_m)$

Define semantics of DL sequents identical to semantics of FOL sequents

Definition (Validity of Sequents over Program Formulas)

A sequent $\Gamma \Rightarrow \Delta$ over program formulas is *valid* iff

$$s \models (\Gamma \Rightarrow \Delta)$$
 in all states s

Consequence for program variables

Initial value of program variables implicitly "universally quantified"

Initial States

Java initial states

KeY prover "starts" programs in initial states according to Java convention:

- Values of array entries initialized to default values: int[] to 0, etc.
- Static object initialization
- No objects created

How to restrict validity to set of *initial states* $S_0 \subseteq S$?

- ① Design closed FOL formula Init with $s \models \text{Init}$ iff $s \in S_0$
- 2 Use sequent Γ , Init $\Rightarrow \Delta$

Operational Semantics of Programs

In labelled transition system $K = (S, \rho)$: $\rho : \Pi \to (S \to S)$ is *operational semantics* of programs $p \in \Pi$

How is ρ defined for concrete programs and states?

Example (Operational semantics of assignment)

States s interpret non-rigid symbols f with $\mathcal{I}_s(f)$

 $\rho(x=t)(s)=s'$ where s' identical to s except $\mathcal{I}_{s'}(x)=\mathit{val}_s(t)$

Very tedious task to define ρ for Java . . . \Rightarrow go directly to calculus for program formulas!

Symbolic Execution of Programs

Sequent calculus decomposes top-level operator in formula What is "top-level" in a sequential program p; q; r?

Symbolic Execution (King, late 60s)

- Follow the natural control flow when analysing a program
- Values of some variables unknown: symbolic state representation

Example

Compute the final state after termination of

int x; int y;
$$x=x+y$$
; $y=x-y$; $x=x-y$;

Symbolic Execution of Programs Cont'd

General form of rule conclusions in symbolic execution calculus

$$\langle \text{stmt}; \text{rest} \rangle \phi$$
, [stmt; rest] ϕ

- Rules must symbolically execute first statement
- Repeated application of rules in a proof corresponds to symbolic program execution

Symbolic Execution of Programs Cont'd

Symbolic execution of assignment

$$\text{assign } \frac{\{\mathbf{x}/\mathbf{x}_{\textit{old}}\}\Gamma,\;\mathbf{x} \doteq \{\mathbf{x}/\mathbf{x}_{\textit{old}}\}t \implies \langle \mathsf{rest}\rangle\phi,\; \{\mathbf{x}/\mathbf{x}_{\textit{old}}\}\Delta}{\Gamma \Longrightarrow \langle \mathbf{x} \; = \; \mathsf{t};\;\; \mathsf{rest}\rangle\phi,\Delta}$$

 x_{old} new program variable that "rescues" old value of x

Example

Conclusion matching:
$$\{x/x\}$$
, $\{t/x+y\}$, $\{rest/y=x-y; x=x-y;\}$, $\{\phi/(x \doteq y_0 \& y \doteq x_0)\}$, $\{\Gamma/x \doteq x_0, y \doteq y_0\}$, $\{\Delta/\emptyset\}$

$$\frac{\mathbf{x}_{old} \doteq \mathbf{x}_{0}, \ \mathbf{y} \doteq \mathbf{y}_{0}, \ \mathbf{x} \doteq \mathbf{x}_{old} + \mathbf{y} \Longrightarrow \langle \mathbf{y} = \mathbf{x} - \mathbf{y}; \ \mathbf{x} = \mathbf{x} - \mathbf{y}; \rangle (\mathbf{x} \doteq \mathbf{y}_{0} \& \mathbf{y} \doteq \mathbf{x}_{0})}{\mathbf{x} \doteq \mathbf{x}_{0}, \ \mathbf{y} \doteq \mathbf{y}_{0} \Longrightarrow \langle \mathbf{x} = \mathbf{x} + \mathbf{y}; \ \mathbf{y} = \mathbf{x} - \mathbf{y}; \rangle (\mathbf{x} \doteq \mathbf{y}_{0} \& \mathbf{y} \doteq \mathbf{x}_{0})}$$

Proving Partial Correctness

Partial correctness assertion

If program ${\tt p}$ is started in a state satisfying Pre and terminates, then its final state satisfies Post

```
\label{eq:post_post} \begin{tabular}{ll} \be
```

Example (In KeY Syntax, Demo automatic proof)

More Properties

Example

$$\forall T y; ((\langle p \rangle x \doteq y) \iff (\langle q \rangle x \doteq y))$$

Not valid in general

Programs p behave q equivalently on variable $T \times T$

Example

$$\exists T y; (x \doteq y \rightarrow \langle p \rangle true)$$

Not valid in general

Program p terminates in all states where x has suitable initial value

Symbolic Execution of Programs Cont'd

Symbolic execution of conditional

if
$$\frac{\Gamma, b \doteq \mathbf{true} \Rightarrow \langle p; \; \mathrm{rest} \rangle \phi, \Delta}{\Gamma \Rightarrow \langle \mathbf{if} \; (b) \; \{ \; p \; \} \; \mathbf{else} \; \{ \; q \; \} \; ; \; \mathrm{rest} \rangle \phi, \Delta}$$

Symbolic execution must consider all possible execution branches

Symbolic execution of loops: unwind

Quantifying over Program Variables

How to express correctness for any initial value of program variable?

Not allowed: $\forall T \ i; \langle \dots i \dots \rangle \phi$ (program \neq logical variable)

Not intended: $\Rightarrow \langle \dots \downarrow \dots \rangle \phi$ (Validity of sequents: quantification over *all* states)

As previous: $\forall T i_0$; $(i_0 \doteq i \rightarrow \langle \ldots i \ldots \rangle \phi)$

Solution

Use explicit construct to record values in current state

Update
$$\forall T i_0; (\{i := i_0\} \langle \dots i \dots \rangle \phi)$$

Explicit State Updates

Updates specify computation state where formula is evaluated

Definition (Syntax of Updates)

If ∇ is program variable, t FOL term type-compatible with ∇ , t' any FOL term, and ϕ any DL formula, then

- $\{ \mathbf{v} := \mathbf{t} \} \phi$ is DL formula

Definition (Semantics of Updates)

State s interprets non-rigid symbols f with $\mathcal{I}_s(f)$ β variable assignment for logical variables in t

$$\rho(\{v:=t\})(s)=s'$$
 where s' identical to s except $\mathcal{I}_{s'}(x)=val_{s,\beta}(t)$

ADAPT 2010

Explicit State Updates Cont'd

Facts about updates $\{v := t\}$

- Update semantics identical to assignment
- Value of update depends on logical variables in t:
- Updates as "lazy" assignments (no term substitution done)
- Updates are not assignments: right-hand side is FOL term $\{x := n\}\phi$ cannot be turned into assignment (*n* logical
 - variable)
 - $\langle x=i++; \rangle \phi$ cannot directly be turned into update
- Updates are not equations: change value of non-rigid terms
- KeY simplifies and applies (if possible) updates automatically.

Assignment Rule Using Updates

Symbolic execution of assignment using updates

$$\text{assign} \ \frac{\Gamma \Longrightarrow \{\mathbf{x} := t\} \langle \mathrm{rest} \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \mathbf{x} = \mathsf{t}; \ \mathrm{rest} \rangle \phi, \Delta}$$

- Avoids renaming of program variables
- Works as long as t has no side effects (ok in simple DL)
- Special cases for $x = t_1 + t_2$, etc.

Demo

swap.key

Example Proof

Example

```
\programVariables {
  int x;
}
\problem {
  (\exists int y;
     ({x := y}\<{while (x > 0) {x = x-1;}}\> x=0 ))
}
Intuitive Meaning? Satisfiable? Valid?
```

Demo

term.key

ADAPT 2010

What to do when we cannot determine a concrete loop bound?

Parallel Updates

How to apply updates on updates?

Example

Symbolic execution of

$$\{x := x+y\} \{y := x-y\} \{x := x-y\}$$

Need to compose three sequential state changes into a single one!

Parallel Updates Cont'd

Definition (Parallel Update)

A parallel update is expression of the form

$$\{\mathit{I}_1 := \mathit{v}_1 || \cdots || \mathit{I}_n := \mathit{v}_n \}$$
 where each $\{\mathit{I}_i := \mathit{v}_i \}$ is simple update

- All v_i computed in old state before update is applied
- Updates of all locations l_i executed simultaneously
- Upon *conflict* $l_i = l_j, v_i \neq v_j$ later update $(\max\{i,j\})$ wins

Definition (Composition Sequential Updates/Conflict Resolution)

$$\begin{aligned} \{I_1 &:= r_1\} \{I_2 := r_2\} &= \{I_1 := r_1 || I_2 := \{I_1 := r_1\} r_2\} \\ \{I_1 := v_1 || \cdots || I_n := v_n\} \times &= \left\{ \begin{array}{ll} \times & \text{if } x \notin \{I_1, \dots, I_n\} \\ v_k & \text{if } x = I_k, x \notin \{I_{k+1}, \dots, I_n\} \end{array} \right. \end{aligned}$$

Parallel Updates Cont'd

Example

```
( {x := x+y} {y := x-y}) {x := x-y} =

{x := x+y || y := (x+y)-y} {x := x-y} =

{x := x+y || y := (x+y)-y || x := (x+y)-((x+y)-y)} =

{x := x+y || y := x || x := y} =

{y := x || x := y}
```

KeY automatically deletes overwritten (unnecessary) updates

Demo

swap.key

Parallel updates to store intermediate state of symbolic computation

A Warning

First-order rules that substitute arbitrary terms

$$\exists -\mathsf{right} \ \frac{\Gamma \Longrightarrow [x/t'] \ \phi, \ \exists \ T \ x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \ T \ x; \ \phi, \Delta} \quad \forall -\mathsf{left} \ \frac{\Gamma, \forall \ T \ x; \ \phi, \ [x/t'] \ \phi \Longrightarrow \Delta}{\Gamma, \forall \ T \ x; \ \phi \Longrightarrow \Delta}$$

applyEq
$$\frac{\Gamma, t \doteq t', [t/t'] \psi \Longrightarrow [t/t'] \phi, \Delta}{\Gamma, t \doteq t', \psi \Longrightarrow \phi, \Delta}$$

 $t,\ t'$ must be rigid, because all occurrences must have the same value

Example

$$\frac{\Gamma, \dot{\mathtt{i}} \doteq 0 \rightarrow \langle \dot{\mathtt{i}} + + \rangle \dot{\mathtt{i}} \doteq 0 \Longrightarrow \Delta}{\Gamma, \forall T x; (x \doteq 0 \rightarrow \langle \dot{\mathtt{i}} + + \rangle x \doteq 0) \Longrightarrow \Delta}$$

Logically valid formula would result in unsatisfiable antecedent!