AT

Karlsruhe Institute of Technology

Specification & Formal Analysis of Java Programs
Java Modelling Language

Prof. Dr. Bernhard Beckert | ADAPT 2010

KIT — INSTITUT FOUR THEORETISCHE INFORMATIK

KIT = University of the State of Badk and National Large le Research Center of the Helmholtz Association



I Design by Contract AIT

stitute of Technology

Specifications fix a contract between caller and callee of a
method (between client and implementor of a module):

If caller guarantees precondition
then callee guarantees certain outcome

m Interface documentation

m Contracts described in a mathematically precise language
(JML)
a higher degree of precision
m automation of program analysis of various kinds
(runtime assertion checking, static verification)
a Note: Errors in specifications are at least as common as
errors in code,

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 2/22



I JML Annotations

/#+@ public normal behavior

@ requires pin == correctPin;
@ ensures customerAuthenticated;
@x/

public void enterPIN (int pin) {

/#@ public normal_ behavior //<hellol!<
@ requires pin == correctPin;
@ ensures customerAuthenticated;
@x/

public void enterPIN (int pin) {

m Java comments with ‘@’ as first character are JML
specifications

a Within a JML annotation, an ‘@’ is ignored
Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010

3/22



| Visibility Modifiers (T

public class ATM {
private /+Q@ spec public @/ BankCard insertedCard = null;
private /xQ spec public @x/
boolean customerAuthenticated = false;

/+@ public normal behavior ... @*/

a Modifiers to specification cases have no influence on their
semantics.

m public specification items cannot refer to private fields.

a Private fields can be declared public for specification
purposes only.

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 4/22



I Method Contracts T

/*Q requires r;
@ assignable a;
@ diverges d;
@ ensures post;
@ signals only E1,...,En;
@ signals(E e) s;
@x/
Tm(...);

/*Q@ requires r; //what is the caller’s obligation?
@ assignable a;
@ diverges d;
@ ensures post;
Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 5/22



I Class Invariants A\‘(IT
//Q invariant i;

m can be placed anywhere in a class (or interface)

m express global consistency properties (not specific to a
particular method)

a must hold “always”
(cf. visible state semantics, observed state semantics)

®m instance invariants can, static invariants cannot refer
to this

m default: instance within classes, static within
interfaces

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 6/22



Pure Methods AT

Pure methods terminate and have no side effects.

After declaring

public /+@ pure (@*/ boolean cardIsInserted() {
return insertedCard!=null;

cardIsInserted()

could replace
insertedCard != null

in JML annotations.

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 7/22



I Pure Methods T

Karlsruhe Institute of Technology

‘pure’ ~ ‘diverges false;’ + ‘assignable \nothing;’

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 8/22



I Expressions AT

All Java expressions without side-effects

==>, <==>: implication, equivalence

\forall, \exists

\num_of, \sum, \product, \min, \max
\old(...): referring to pre-state in postconditions

\result: referring to return value in postconditions

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 9/22



I Quantification in JML

(\forall int i; 0O<=i
equivalent to
(\forall int i; 0O<=i

(\exists int i; 0<=1i
equivalent to
(\exists int i; O0<=i

&&

&&

&&

&&

i<\result.length; \result[i]>0)

i<\result.length ==> \result[i]>0)

i<\result.length; \result[i]>0)

i<\result.length && \result[i]>0)

a Note that quantifiers bind two expressions, the range
predicate and the body expression.

a A missing range predicate is by default t rue.
a JML excludes null from the range of quantification.

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 10/22



Gener_al_lsed and Numerical AT
Quantifiers

(\num_of C c; e) #{c|[e]},number of elements of class
with property e
(\sum C c¢; p; t) >
c:[p]
(\product C c; p; t) []I[{
c:[p]
(\min C c¢c; p; t) min{[t]}
c:[p]
(\max C c; p; t) max{[t]}
c:[o]

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 11/22



I The assignable Clauses

Comma-separated list of:
m e.f (where £ afield)
malx],al[x..y] (where a an array expression)
m \nothing, \everything (default)

Example

C %, vi
//@ assignable x, x.1i;
void m() {
C tmp = x; //allowed (local variable)
tmp.i = 27; //allowed (in assignable clause)
X = Yy; //allowed (in assignable clause)
x.1 = 27; //forbidden (not local, not in assignable)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 12/22



I The diverges Clause AT

diverges ¢;

with a boolean JML expression e specifies that the method may
not terminate only when e is true in the pre-state.

Examples

diverges false;

The method must always terminate.
diverges true;

The method may terminate or not.

diverges n == 0;
The method must terminate, when called in a state with n!=0.

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 13/22



The signals Clauses AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

ensures p;
signals only ET1, ..., ETm;
signals (El el) sl;

signals (En en) sn;

a normal termination = p must hold (in post-state)

m exception thrown =- must be of type ET1, ..., Or ETm

m exception of type E1 thrown = s1 must hold (in
post-state)

m exception of type En thrown = sn must hold (in
post-state)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 14/22



| WModel Fields IT

public interface IBonusCard {

public void addBonus (int newBonusPoints) ;

public interface IBonusCard {

/*Q public instance model int bonusPoints; @x/

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 15/22



I Implementing Interfaces AT

public interface IBonusCard {
/+@ public instance model int bonusPoints; @x/

/%@ ... @x/
public void addBonus (int newBonusPoints) ;

Implementation

public class BankCard implements IBonusCard({
public int bankCardPoints;
/*@ private represents bonusPoints = bankCardPoints; @x*/

public void addBonus (int newBonusPoints) {
bankCardPoint st=newBonusPoints; }

}

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 16/22



I Other Representations AIT

/*@ private represents bonusPoints
= bankCardPoints; @x/

/*Q private represents bonusPoints
= bankCardPoints * 100; @x*/

/+Q@ represents x \such that A(x); @x/

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 17/22



I Inheritance of Specifications in JML

a Aninvariant to a class is inherited by all its subclasses.

m An operation contract is inherited by all overridden
methods.
It can be extended there.

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 18/22



I Other JML Features AT

m assertions ‘//@ assert e;’

m loop invariants ‘//@ maintaining p;’
m data groups

a refines

® many more. ..

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 19/22



| Nuity ST

JML has modifiers non_null and nullable

private /x@spec public non null@x/ Cbject x;

~» implicit invariant added to class: ‘invariant x != null;’

void m(/*@non null@+/ Object p);

~» implicit precondition added to all contracts:
‘requires p != null;’

/+@non_null@«/ ObJject m();

~ implicit postcondition added to all contracts:
‘ensures \result != null;’

non null is the default!
If something may be null, you have to declare it nullable

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 20/22



Problems with Specifications Using IT
Integers

/+@ requires y >= 0;
@ ensures
@ \result x \result <= y &&
@ v < (abs(\result)+1l) » (abs(\result)+1l);
@ x/
public static int isqgrt (int vy)

For y = 1 and \result = 1073741821 = }(max_int — 5) the
above postcondition is true, though we do not want
1073741821 to be a square root of 1.

JML uses the Java semantics of integers:

1073741821 « 1073741821 = —2147483639
1073741822 + 1073741822 = 4

The JML type \bigint provides arbitrary precision integers.

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 21/22



I JML Tools

Many tools support JML (see JML homepage). Among them:
@ jml: JML syntax checker

® jmldoc: code documentation (like Javadoc)

® jmlc: compiles Java+JML into bytecode with assertion
checks

jmlunit: unit testing (like JUnit)

rac: runtime assertion checker
ESC/Javaz2: leightweight static verification
KeY: full static verification

OpenJML: tool suite, under development

The tools do not yet support the new features of Java 5!
e.g.: no generics, no enums, no enhanced for-loops, no
autoboxing

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 22/22



	Java Modelling Language

