
KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Prof. Dr. Bernhard Beckert | ADAPT 2010

Introduction

Specification & Formal Analysis of Java Programs

KIT – INSTITUT FÜR THEORETISCHE INFORMATIK



Karlsruhe Institute of Technology

Merger of

Karlsruhe University (state funded)
Research Center Karlsruhe (funded by federal
government)

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 2/15





Motivation:
Software Defects Cause BIG Failures

Tiny faults in technical systems can have catastrophic
consequences

In particular, this goes for software systems
Ariane 5
Mars Climate Orbiter, Mars Sojourner
London Ambulance Dispatch System
Denver Airport Luggage Handling System
Pentium Bug
EC Card Bug

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 3/15



Motivation:
Software Defects cause
OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software these days is inside just about anything:
Mobiles
Smart devices
Smart cards
Cars
Aviation

⇒ software—and specification—quality is a growing legal issue

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 4/15



Achieving Reliability in Engineering

Some well-known strategies from civil engineering
Precise calculations/estimations of forces, stress, etc.
Hardware redundancy (“make it a bit stronger than
necessary”)
Robust design (single fault not catastrophic)
Clear separation of subsystems
Any air plane flies with dozens of known and minor defects
Design follows patterns that are proven to work

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 5/15



Why This Does Not Work For
Software

Software systems compute non-continuous functions
Single bit-flip may change behaviour completely
Redundancy as replication doesn’t help against bugs
Redundant SW development only viable in extreme cases
No clear separation of subsystems
Local failures often affect whole system
Software designs have very high logic complexity
Design practice for reliable software in immature state
for complex, particularly, distributed systems
Extremely short innovation cycles

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 6/15



Limitations of Testing

Testing adaptive systems is difficult
Testing shows the presence of errors, in general not their
absence
(exhaustive testing viable only for trivial systems)
Representativeness of test cases/injected faults subjective
How to test for the unexpected? Rare cases?
Testing is labor intensive, hence expensive

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 7/15



Formal Methods: The Scenario

Rigorous methods used in system design and development
Mathematics and symbolic logic⇒ formal
Increase confidence in a system
Two aspects:

System implementation
System requirements

Make formal model of both and use tools to prove
mechanically
that formal execution model satisfies formal requirements

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 8/15



Formal Methods: The Vision

Complement other analysis and design methods
Are good at finding bugs
(in code and specification)
Reduce development (and test) time
Can ensure certain properties of the system model
Should ideally be as automatic as possible

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 9/15



Various Properties
(Require Different Verification Techniques)

Simple properties
Safety properties
Something bad will never happen (eg, mutual exclusion)
Liveness properties
Something good will happen eventually

General properties of concurrent/distributed systems
deadlock-free, no starvation, fairness

Non-functional properties
Runtime, memory, usability, . . .

Full behavioural specification
Code satisfies a contract that describes its functionality
Data consistency, system invariants
(in particular for efficient, i.e. redundant, data
representations)
Modularity, encapsulation
Refinement relation

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 10/15



The Main Point of Formal Methods is
Not

To show “correctness” of entire systems
What IS correctness? Always go for specific properties!
To replace testing entirely

Formal methods work on models, on source code, or, at
most, on bytecode level
Many non-formalizable properties

To replace good design practices

There is no silver bullet!

No correct system w/o clear requirements & good design
One can’t formally verify messy code with unclear specs

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 11/15



But . . .

Formal proof can replace (infinitely) many test cases
Formal methods can be used in automatic test case
generation
Formal methods improve the quality of specs
(even without formal verification)
Formal methods guarantee specific properties of a specific
system model

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 12/15



Formal Methods Aim at:

Saving money
Intel Pentium bug
Smart cards in banking
Saving time
otherwise spent on heavy testing and maintenance
More complex products
Modern µ-processors
Fault tolerant software
Saving human lives
Avionics, X-by-wire
Washing machine

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 13/15



Tool Support is Essential

Some Reasons for Using Tools
Automate repetitive tasks
Avoid clerical errors, etc.
Cope with large/complex programs
Make verification certifiable

Prof. Dr. Bernhard Beckert – Specification & Formal Analysis of Java Programs ADAPT 2010 14/15


	Introduction
	KIT
	Merger
	Figures

	Motivation

