Karlsruhe Institute of Technology

Specification & Formal Analysis of Java Programs
Introduction

Prof. Dr. Bernhard Beckert | ADAPT 2010

KIT — INSTITUT FOUR THEORETISCHE INFORMATIK

KIT = University of the State of Badk and National Large le Research Center of the Helmholtz Association



eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

I Karlsruhe Institute of Technology AT

-

r %

S o e )

a Karlsruhe University (state funded)

m Research Center Karlsruhe (funded by federal
government)

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 2/15



Figures A\‘(IT

Employees Students

8, 500

19,700
4. 65

Annual Budget in Million Euros




Motivation: S&AT
Software Defects Cause BIG Failures =

Tiny faults in technical systems can have catastrophic
consequences

In particular, this goes for software systems

m Ariane 5

m Mars Climate Orbiter, Mars Sojourner

m London Ambulance Dispatch System

a Denver Airport Luggage Handling System
a Pentium Bug

a EC Card Bug

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 3/15



Motivation:
Software Defects cause ﬂ(".
OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures |

Software these days is inside just about anything:

m Mobiles

® Smart devices
@ Smart cards
m Cars

a Aviation

= software—and specification—quality is a growing legal issue

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 4/15



Achieving Reliability in Engineering AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Some well-known strategies from civil engineering
m Precise calculations/estimations of forces, stress, etc.

® Hardware redundancy (“make it a bit stronger than
necessary”)

m Robust design (single fault not catastrophic)

m Clear separation of subsystems
Any air plane flies with dozens of known and minor defects

m Design follows patterns that are proven to work

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 5/15



Why This Does Not Work For AT
Software

m Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

a Redundancy as replication doesn’t help against bugs
Redundant SW development only viable in extreme cases

m No clear separation of subsystems
Local failures often affect whole system

m Software designs have very high logic complexity

m Design practice for reliable software in immature state
for complex, particularly, distributed systems

m Extremely short innovation cycles

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 6/15



Limitations of Testing IT

m Testing adaptive systems is difficult

m Testing shows the presence of errors, in general not their
absence
(exhaustive testing viable only for trivial systems)

a Representativeness of test cases/injected faults subjective
How to test for the unexpected? Rare cases?

m Testing is labor intensive, hence expensive

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 7115



I Formal Methods: The Scenario

m Rigorous methods used in system design and development
m Mathematics and symbolic logic = formal
m Increase confidence in a system
a Two aspects:
m System implementation
a System requirements
a Make formal model of both and use tools to prove
mechanically
that formal execution model satisfies formal requirements

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 8/15



I Formal Methods: The Vision IT

m Complement other analysis and design methods

a Are good at finding bugs
(in code and specification)

m Reduce development (and test) time
a Can ensure certain properties of the system model
a Should ideally be as automatic as possible

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 915



Various Properties AT
(Require Different Verification Techniques)

a Simple properties
m Safety properties
Something bad will never happen (eg, mutual exclusion)
m Liveness properties
Something good will happen eventually
m General properties of concurrent/distributed systems

a deadlock-free, no starvation, fairness
a Non-functional properties
a Runtime, memory, usability, ...

a Full behavioural specification
m Code satisfies a contract that describes its functionality
a Data consistency, system invariants
(in particular for efficient, i.e. redundant, data
representations)
a Modularity, encapsulation
a Refinement relation

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 10/15



Lr:ta Main Point of Formal Methods is A\‘(lT

a To show “correctness” of entire systems
What /S correctness? Always go for specific properties!

m To replace testing entirely

a Formal methods work on models, on source code, or, at
most, on bytecode level
@ Many non-formalizable properties

a To replace good design practices

There is no silver bullet! |

a No correct system w/o clear requirements & good design
a One can’t formally verify messy code with unclear specs

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 11/15



a Formal proof can replace (infinitely) many test cases

m Formal methods can be used in automatic test case
generation

a Formal methods improve the quality of specs
(even without formal verification)

a Formal methods guarantee specific properties of a specific
system model

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 12/15



I Formal Methods Aim at:

a Saving money

Intel Pentium bug

Smart cards in banking
m Saving time

otherwise spent on heavy testing and maintenance
a More complex products

Modern p-processors
Fault tolerant software

a Saving human lives
Avionics, X-by-wire
Washing machine

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 13/15



I Tool Support is Essential

Some Reasons for Using Tools

a Automate repetitive tasks

a Avoid clerical errors, etc.

m Cope with large/complex programs
m Make verification certifiable

Prof. Dr. Bernhard Beckert — Specification & Formal Analysis of Java Programs ADAPT 2010 14/15



	Introduction
	KIT
	Merger
	Figures

	Motivation

