
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

On Essential Program Annotations and
Completeness of Verifying Compilers?

Bernhard Beckert, Thorsten Bormer, Vladimir Klebanov

Dept. of Computer Science, University of Koblenz, Germany

Received: date / Revised version: date

Abstract. It is widely recognized that interaction is in-
dispensable in deductive verification of real-world code.
A verification engineer has to guide the proof search
and provide information reflecting their insight into the
workings of the program. Lately we have seen a shift to-
wards a paradigm, called verifying compilers, where the
required information is provided in form of program an-
notations instead of interactively during proof construc-
tion.

In this paper, we discuss the different purposes that
annotations can serve. Based on a clarification of what
the notion of completeness means in the framework of
verifying compilers, we show that some auxiliary (non-
requirement) annotations are (only) needed for efficiency
of proof search, while others are essential for complete-
ness, i.e., indispensable for proof construction.

1 Introduction

It is widely recognized that interaction is indispensable
in deductive verification of real-world code. A verifica-
tion engineer has to guide the proof search and pro-
vide information reflecting their insight into the work-
ings of the program. Lately we have seen a shift towards
a paradigm, called verifying compilers [7], where the re-
quired information is provided in form of program an-
notations instead of interactively during proof construc-
tion. This has some interesting consequences upon the
verification process and the way annotations are used to
specify programs as the lines between requirement spec-
ification and information required for proof construction
and proof search guidance get blurred.

? Work partially funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) in the framework of the Verisoft XT
project under grant 01 IS 07008 H. The responsibility for this ar-
ticle lies with the authors.

In this paper, we discuss the different purposes that
annotations can serve. Based on a clarification of what
the notion of completeness means in the framework of
verifying compilers, we show that some auxiliary (non-
requirement) annotations are (only) needed for efficiency
of proof search, while others are essential for complete-
ness, i.e., indispensable for proof construction. Our con-
siderations reveal that users have to possess a certain
knowledge about the inner workings of a verifying com-
piler. They need to know what kinds of annotations are
indispensable in which situations. This is somewhat sur-
prising, as it contradicts the idea of freeing the user from
the need to know about the inner workings of the ver-
ification system and enabling the use of the tool as a
“black box,” which is generally seen as a central part of
the verifying compiler paradigm.

Tools following the verifying compiler paradigm in-
clude Spec# [1], VCC [9], and Caduceus [5]. They are all
based on powerful fully-automatic provers and decision
procedures, and they support real-world programming
languages such as C and C#. The typical architecture
of such systems is described in Section 2, and the possible
outcomes of invoking a verifying compiler are explained
in Section 3. Then, we discuss the notion of complete-
ness in the framework of verifying compilers and give
a formal definition (Sect. 4). Based on this discussion,
we analyze the different kinds of annotations and which
of them are essential for completeness (Sect. 5 and 6).
Finally, we summarize our conclusions in Section 7.

2 Inside a Typical Verifying Compiler

In the following we describe the process of software ver-
ification with the Verifying C Compiler (VCC). Our ob-
servations (unless noted otherwise) are, however, not re-
stricted to this particular setup.



2 Beckert, Bormer, and Klebanov: Completeness of Verifying Compilers

The VCC toolchain allows for modular verification of
C programs using method contracts and invariants over
data structures. Method contracts are specified by pre-
and post-conditions. These contracts and invariants are
stored as annotations within the source code in a way
that is transparent to the regular, non-verifying com-
piler.

As most verifying compilers today, VCC works us-
ing an internal two-stage process. The reason for this is
a better separation of concerns and easy integration of
different tools. We will discuss the interplay of the two
stages, but many of our remarks also apply to one-stage
or multi-stage approaches.

The first stage of the VCC toolchain translates the
annotated C code into first-order logic via an interme-
diate language called BoogiePL [4]. BoogiePL is a sim-
ple imperative language with embedded assertions. From
this BoogiePL representation, it is easy to generate a set
of first-order logic formulas, which state that the pro-
gram satisfies the embedded assertions. These formulas
are called verification conditions and the stage a verifi-
cation condition generator (VCG).

In the second stage, the resulting formulas are given
to an automatic theorem prover (TP) resp. SMT solver
(in our case Z3 [3]) together with a a background theory
capturing the semantics of C’s built-in operators, etc.
The prover checks whether the verification conditions
are entailed by the background theory. Entailment im-
plies that the original program is correct w.r.t. its spec-
ification.

3 The Possible Outcomes of Invoking a
Verifying Compiler

In practice, where the limitations of resources are rel-
evant, the possible outcomes of a verification attempt
using a two-stage verifying compiler are:1

1. The formulas generated by the VCG are valid, and
the TP has found a proof for that. This outcome
entails that the original program has the specified
properties.

2. Some generated formula is not valid, and the TP has
found a counter-example. This can mean two things:
(a) The program is not correct w.r.t. its specifica-
tion, i.e., there is an error in either the program code
or the specification. (b) The program satisfies the
specification, but some loop invariant or other auxil-
iary annotation is not strong enough and, as a conse-
quence, some generated verification condition is not
a valid formula. We will discuss this distinction in
more detail in Section 5.

1 We assume that the programs to be verified are of reason-
able size such that only the theorem proving stage can run out of
resources and not the VCG stage.

3. The TP runs out of resources (time or space). This
can mean three things: (a) The generated formula
is valid and the program is correct (as in Case 1
above), but the TP could not find a proof in the al-
lotted time/space. (b) The formula is not valid (as in
Case 2 above), but the TP could not find a counter-
example. The non-validity can, again, be due either
to the program being incorrect or to some auxiliary
annotation being not strong enough.

In Case 1 above, the invocation of the verifying com-
piler was successful—a desired but rare case in practice.
Cases 2 and 3 are much more common, and the user
has to analyze the problem. If they find (using the po-
tential counter-example) that the program indeed does
not satisfy the specification, the error has to be cor-
rected. If they find that the program satisfies the spec-
ification, then new auxiliary annotations (stronger in-
variants, helpful lemmas, etc.) have to be added. This
process is repeated until the program can be verified.

4 The Notion of Completeness for Verifying
Compilers

To separate the annotations that are essential and the
ones that are needed only for efficiency, one needs a clear
understanding of the notion of completeness. In this sec-
tion, we discuss what completeness means in the frame-
work of verifying compilers and give a formal definition.

In general, completeness of a given calculus or sys-
tem in program verification means that if a program P
is correct w.r.t. its requirement specification REQ , in
symbols |= 〈P, REQ〉, then this fact can be proved using
the calculus resp. system, in symbols Th ` 〈P,REQ〉,
where Th is a fixed set of axioms. The semantics of the
programming language (used for P ) and the annotation
language (used for REQ) are encoded in the calculus
rules and in the background theory Th. The restriction
of resources (time and space) of real-world systems is
usually not considered for the notion of completeness.

First off, because all non-trivial properties of pro-
grams are undecidable (Rice’s Theorem), all program
verification systems are necessarily incomplete. Instead
the notion of relative completeness is used, i.e., complete-
ness in the sense that the system or calculus would be
complete if it had an oracle for the validity of formulas
about arithmetic [2]. This can be formalized as follows:

Definition 1. Given a programming language, an an-
notation language, and a definition of when a program P
satisfies a specification REQ , denoted by |= 〈P, REQ〉,
a verification system S, consisting of `S and ThS , is
relatively complete (w.r.t. arithmetics) if, for each pro-
gram P and specification REQ with |= 〈P, REQ〉, there
is a set Arith of valid arithmetical formulas such that
ThS ∪Arith `S 〈P, REQ〉.



Beckert, Bormer, and Klebanov: Completeness of Verifying Compilers 3

From here on, we assume that the axiomatization Th
together with the calculus rules built into the theorem
prover approximates arithmetic well enough, such that
the valid arithmetic formulas that are actually needed in
practice can be derived. Consequently, in the following,
we do not need to distinguish between completeness and
relative completeness. One has to keep in mind, though,
that the distinction exists, even if we leave it out of our
further considerations.

In the usual theorem proving setup, not much more
is to be said about the notion of completeness, and one
can fully concentrate on the problem of how to con-
struct complete calculi and systems. The same could the-
oretically be demanded from verifying compilers as well.
Then, no non-requirement annotations would be neces-
sary, and the ones given would be solely for efficiency
purposes. This is conceivable as, for instance, it is al-
ways possible to generate the strongest loop invariant
automatically, based on Gödelization (cf. [6]). The rea-
son it is not done in practice is that the resulting proof
obligations would be extremely difficult to discharge.

Instead, all of today’s deductive verification systems
presuppose certain types of additional, non-requirement
annotations to find proofs. It is neither given nor ex-
pected that a verifying compiler is relatively complete in
the sense of Def. 1. In contrast, completeness of a verify-
ing compiler means that if the program is correct w.r.t.
its given requirement specification REQ , then some aux-
iliary specification AUX exists allowing to prove this.

Definition 2. A verifying compiler S = (`S , ThS), is
complete if, for each program P and specification REQ
with |= 〈P, REQ〉, there is (a) a set AUX of annotations
and (b) a set Arith of valid arithmetical formulas such
that ThS ∪Arith `S 〈P, REQ+AUX 〉.

Of course, adding auxiliary annotations must strictly
increase the strength of specifications, i.e., + must be
monotonic:

Definition 3. The operator + for adding annotations
is monotonic iff, for all programs P and all specifica-
tions SPEC and SPEC ′, if |= 〈P, SPEC +SPEC ′〉 then
|= 〈P, SPEC 〉.

For example, adding a formula to a pre-condition, and
thus weakening it, violates the condition of Def. 3 and is
not an acceptable way of adding auxiliary annotations.
Note also the difference between |= and `: Less anno-
tations are easier to satisfy by the program (|=), while
more annotations may be required to find a proof (`).

The completeness of the whole verifying compiler
process depends on completeness of the components of
the toolchain. As already described, the toolchain usu-
ally consists of a VCG stage and an automated theo-
rem proving or SMT backend. The VCG must be able
to generate valid formulas provided the auxiliary anno-
tations are sufficiently strong, i.e, if |= 〈P, REQ〉 then
Th |=FOL V CG(P, REQ+AUX ) for some AUX . Then

the TP, in its turn, must be able to prove these valid
formulas: Th ` V CG(P, REQ+AUX ).

The users, who serve as an oracle for finding auxil-
iary annotations that are strong enough to prove a given
program correct, are not relevant for the completeness
as long as they are considered to be omniscient and al-
ways find the required annotation (provided it exists). In
practice, of course, users are not omniscient. They may
very well fail to find the required auxiliary annotation,
which may lead to a failure in the verification process
even if the verification system is complete.

Note that, if one complete system S is stronger than
another complete system S′ because it can automati-
cally derive additional annotations (it may, e.g., include
a generator for loop invariants), then life is easier for
the user of S; proofs will be found more often using S
and with less effort (less auxiliary annotations). Never-
theless, both systems S and S′ are complete; there are
no different degrees of completeness.

5 Different Purposes of Program Annotations

Annotations can serve distinctively different purposes,
though sometimes several different ones simultaneously.
The following classification of annotations is neither syn-
tactic nor semantic, but concerns rather the pragmatics
of their use and the intentions of their author.

Requirement Annotations. Requirement annota-
tions constitute the specification of the program. They
assure the behavior of the program (module) towards its
environment. They are the reason for performing veri-
fication. Typical requirement annotations are pre- and
post-conditions, class invariants, or resource consump-
tion limits. They are visible externally and cannot be
changed easily.

Auxiliary Annotations. Auxiliary annotations are
used to guide the proof search. They are usually not part
of program requirements. As long as they satisfy their
purpose, auxiliary annotations can be changed anytime
without notice. We further distinguish two subclasses of
auxiliary annotations:

(a) The first subclass is necessary merely for efficiency
reasons. It encompasses lemmas, intermediate asser-
tions, quantifier instantiation triggers, and the like.
These annotations are not necessary for complete-
ness. They can always be made obsolete by increas-
ing the space/time available for proof search or by
advances in SMT prover technology. Another pur-
pose of annotations from this subclass is to inspect
the proof state. For this, the user temporarily adds
auxiliary annotations to get information about im-
plicit “knowledge” of the proof system at particular
points in the proof search – in order to eventually
come up with the right auxiliary annotations needed
to complete the proof (as defined in Def. 2). Due to



4 Beckert, Bormer, and Klebanov: Completeness of Verifying Compilers

the design philosophy of verifying compilers, the user
is presented with only a limited view on the resulting
proof obligations and the proof search.

(b) The other subclass of auxiliary annotations are es-
sential annotations. Getting them right is essential
for completeness, the very existence of a correctness
proof. The most prominent essential annotations are
loop invariants. Further auxiliary annotations that
can be essential are data-structure invariants and ab-
stractions, ownership annotations, and framing con-
ditions.

6 Possible Problems with Annotations

Annotations and Program Code Can Be In Conflict. A
program P and an annotation SPEC are in conflict if the
program does not fulfill the specification: 6|= 〈P, SPEC 〉.

Consider the code in Figure 1 together with the re-
quirement to compute the minimum of a given array
of length size. The pre-condition of the method (key-
word requires) states that array points to a C ar-
ray in memory with positive length size, which is not
modified outside the current thread (the latter enables
sequential reasoning). The post-condition of the method
(keyword ensures) states that the result of the method
is (a) less or equal than all elements and (b) contained
in the array. We assume in the following that this is the
right set of requirement annotations.

One possible error that could occur in the program
is that the variable min has never been initialized (line
labeled (A) missing). The resulting program is legal C
code, but depending on the random initial value of min
and the contents of the array, may fail to compute the
minimum, and it does not satisfy the annotations.

For this conflict, the VCC system is able to pro-
vide a counter-example. It demonstrates that the third
loop invariant does not hold when the loop is entered.
The variable assignment returned as counter-example is:
size = 1, min = 0, array[0] = 1.

Annotations Can Be Too Weak. An auxiliary annota-
tion AUX is too weak if |= 〈P, REQ+AUX 〉, i.e., the
program is correct w.r.t. the specification, but this can-
not be shown. There are now two cases to distinguish:

1. The VCG produces valid verification conditions, i.e.,
Th |=FOL V CG(P, REQ+AUX ), and there is a proof
for this, i.e., Th ` V CG(P, REQ+AUX ), but the TP
stage runs out of resources before finding it.

2. Something essential is missing from AUX and at
least one of the verification conditions generated by
the VCG is invalid: Th 6|=FOL V CG(P, REQ+AUX ),
and (because of soundness) no proof exists, that is:
Th 6` V CG(P, REQ+AUX ).

In Case (1), no counter-example is available and the
user has limited recourse – to assist the user, VCC pro-
vides tools for inspecting the duration of proof attempts

for single proof obligations as well as identifying axioms
that are “costly” for the prover to instantiate, leading
to an inefficient proof search. In Case (2), a counter-
example for the validity of the verification condition may
be constructed. We give an example for this latter case.

Assume that the third loop-invariant has been forgot-
ten (label (B) in the program). Without that invariant,
the system cannot verify the second post-condition. The
generated counter-example is still the same as above, but
this time it shows that the loop invariants (after the loop
terminates) do not logically entail the post-condition.

Annotations Can Be Inadequate. An annotation is inad-
equate when it does not mean what its author thinks it
means. Verification of inadequate annotations will thus
not have the expected impact in the real world. Per
its very nature, user input cannot easily be verified or
tested for adequacy. But, apart from many systematic
approaches for elicitation of requirements (which we will
not cover here), there is a number of ways in which veri-
fication technology can assist its user to formulate mean-
ingful specifications.

First, the builders of verification systems can work
on formalisms that do not make it unnecessarily hard
for the users to express their exact intentions. Second,
the verification systems can produce a proof or a trace
to justify the result. Inspection of the proof is a very
effective—if costly—measure to combat misunderstand-
ings in the meaning of the proof obligation. There are
reports that users of verifying compilers monitor the
prover running time to detect verification based on in-
advertently inconsistent specifications (a particular case
of inadequacy). In addition, VCC can check for inconsis-
tencies in the specification by trying to prove false at
the different execution branches of the program – this
of course can also only give an indication whether the
specification is consistent or not.

Third, a whole new class of sanity checks based on
mutation has been developed lately for automated pro-
gram verification with model checking [8]. After a suc-
cessful verification attempt, the query (the program or
the specification) is mutated and the deduction is re-
peated. If verification succeeds again, then the mutated
part of the query probably plays no role in determining
the outcome. This indicates a problem with the query.

7 Lessons Learned

Throughout this paper, the distinction of requirement
annotation and auxiliary annotation plays an important
role, and it moreover plays an important role in practice.

Verifying compilers are currently not being designed
for completeness in the sense that theorem provers are
(Def. 1). They are designed for completeness in a dif-
ferent sense (Def. 2), requiring the user as an oracle to



Beckert, Bormer, and Klebanov: Completeness of Verifying Compilers 5

int min(int *array, unsigned int size)
requires(size > 0)
requires(wrapped(as_array(array, size)))
ensures(forall(int i; 0<=i && i<(int)size ==> result <= array[i]))
ensures(exists(int i; 0<=i && i<(int)size && result == array[i]))

{
int i, min;
min = array[0]; // * (A) *
for (i = 0; i < (int)size; i++)
invariant(0 <= i && i <= (int)size)
invariant(forall(int j; 0 <= j && j < i ==> array[j] >= min))
invariant(exists(int j; 0 <= j && j < (int)size && min == array[j])) // * (B) *

{ if (array[i] < min) min = array[i]; }
return min;

}

Fig. 1. Computing the smallest element of an array by simple iteration

provide sufficient auxiliary annotations in form of, e.g.,
loop invariants or assertions.

In theory the user could always give auxiliary anno-
tations of maximal strength (i.e., logically entailing all
other possible annotations), but this is not feasible in
practice. Instead, one is interested in a weak set of aux-
iliary annotations that is still sufficient. Consequently,
it is extremely important for the user to have knowl-
edge about which kind of annotations are essential for
the given VCG—even in cases where the requirement to
be verified is comparatively simple. Without that knowl-
edge they may continue to add the wrong annotations.

This need is to some extent in conflict with the ver-
ifying-compiler paradigm, which assumes that the user
does not need to know about the inner workings of the
verification system and calculus and can use the sys-
tem as a “black box.” At this point, stronger commu-
nication about the richness and significance of auxiliary
annotations would be beneficiary. The verification sys-
tems should also provide better round-trip feedback to
the user to discern and fix different kinds of annotation-
related problems we have described.

We also suggest to enrich the annotation languages
with a syntactical way (e.g., a key word) to distinguish
between the two kinds of annotations. That would make
annotations clearer and easier to read and understand.
Moreover, annotations that are known to be purely aux-
iliary can be changed without harm during the verifica-
tion process or when the implementation is changed.

References

1. M. Barnett, R. Leino, and W. Schulte. The Spec# pro-
gramming system: An overview. In Construction and
Analysis of Safe, Secure, and Interoperable Smart De-
vices (CASSIS), International Workshop, 2004, Marseille,
France, Revised Selected Papers, LNCS 3362, pages 49–69.
Springer, January 2005.

2. S. A. Cook. Soundness and completeness of an axiom
system for program verification. SIAM Journal of Com-
puting, 7(1):70–90, 1978.

3. L. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In Proc., 14th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, Budapest, Hun-
gary, LNCS 4963, pages 337–340. Springer, 2008.

4. R. DeLine and K. R. M. Leino. BoogiePL: A typed pro-
cedural language for checking object-oriented programs.
Technical Report MSR-TR-2005-70, Microsoft Research,
2005.

5. J.-C. Filliâtre and C. Marché. Multi-prover verification of
C programs. In Formal Methods and Software Engineer-
ing, LNCS 3308, pages 15–29. Springer, 2004.

6. D. Harel. First-Order Dynamic Logic. Springer, 1979.
7. C. A. R. Hoare. The verifying compiler: A grand challenge

for computing research. Journal of the ACM, 50(1):63–69,
2003.

8. O. Kupferman. Sanity checks in formal verification. In
Proceedings, 17th International Conference on Concur-
rency Theory, LNCS 4137, pages 37–51. Springer, 2006.

9. W. Schulte, X. Songtao, J. Smans, and F. Piessens. A
glimpse of a verifying C compiler. In Proceedings, C/C++
Verification Workshop, 2007.


