
VAMP 2007

A Dynamic Logic for Deductive Verification of

Concurrent Java Programs With Condition

Variables

Bernhard Beckert and Vladimir Klebanov

Abstract

In this paper, we present an approach aiming at full functional deductive verification of concurrent Java
programs, based on symbolic execution. We define a Dynamic Logic and a deductive verification calculus
for a restricted fragment of Java with native concurrency primitives. Even though we cannot yet deal with
non-atomic loops, employing the technique of symmetry reduction allows us to verify unbounded systems.
The calculus has been implemented within the KeY system. In contrast to previous work, the version
presented here includes the rules for handling condition variables.

1 Introduction

1.1 Motivation and Goals

In this paper, we present a Dynamic Logic and a deductive verification calculus

for a fragment of the Java language, which includes concurrency. Our aim has

been to design a logic that (1) reflects the properties of Java concurrency in an

intuitive manner (2) has a sound and (relatively) complete calculus (3) requires no

intrinsic abstraction, no bounds on the state space or thread number (4) allows

reasoning about properties of the scheduler within the logic, but does not require

such reasoning for program verification.

To achieve our goal, we currently have to make three important restrictions.

(1) We do not consider thread identities in programs, (2) we do not handle dynamic

thread creation (but systems with an unbounded number of threads), (3) we re-

quire that all loops are executed atomically. These restrictions allow us to employ

very efficient symmetry reductions and thus symbolically execute programs in the

presence of unbounded concurrency. We will discuss their significance in the next

section.

Our calculus has been implemented in the KeY system [2,3], which has been

successfully used for verification of non-concurrent Java programs. We benefit from

the KeY system’s 100% Java Card coverage, which includes full support for dy-

namic object creation (including static initialization), efficient aliasing treatment,

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

full handling of exceptions and method calls, Java-faithful arithmetics, etc.

This paper extends [4] with rules to verify programs with condition variables.

Conversely, the former paper includes an additional invariant rule, and a description

of the application of our method to verify a piece of code from the Java standard

library.

1.2 Achieved Java Coverage

On the sequential side, we benefit from the KeY system’s 100% Java Card coverage,

which includes full support for dynamic object creation (with static initialization),

efficient aliasing treatment, full handling of exceptions and method calls, Java-

faithful arithmetics, etc. All of these features can be used in concurrent programs.

On the concurrent side, we have to restrict the program fragment as stated. Also,

like all Java verification systems known to us, we assume an intuitive, sequentially

consistent memory model, where updates to shared state are immediately visible to

all threads. In reality, the Java Memory Model provides much weaker guarantees.

We believe that our calculus could be extended to reflect these. Apart from this,

our calculus faithfully models Java’s concurrency.

One concurrency limitation concerns the use of explicit thread identities in pro-

grams. These are usually manifested by invocations of methods from the class

Thread, the most important being t.interrupt() and t.join(). Since our cal-

culus is strongly based on symmetry reduction such programs are not allowed. We

believe, though, that this limitation precludes us from verifying only a small fraction

of interesting code. In particular, it does not forbid the use of synchronized blocks

or condition variables with wait()/notify().

The only thread creation mechanism we currently provide is the possibility for

the programmer to specify the initial thread configuration of a program (together

with the initial local variable assignment). Note that the configuration values can

be symbolic (“k threads”). While this limitation is indeed unfortunate, it does

not impair the usefulness of the calculus much. It is in the nature of concurrent

Java applications that most objects are passive entities. They are unaware of thread

creation and can (and indeed have to) be verified for an arbitrary number of threads

accessing them. The most prominent expression of this fact is library code, which

has to be thread-safe for any number of client threads.

Finally, we require all loops to be atomic. The programmer has to ensure that no

(significant) interleavings occur while the loop runs. This property can be checked

by our method as described later on. We are working on overcoming this limitation

by developing a more elaborated algebraic model of the scheduler.

1.3 Related Work

Several deductive calculi for (different fragments of) sequential Java exist, while not

much work has been done to extend these calculi to cover concurrency. A notable

exception is the Verger tool [1], a deductive verification system based on Hoare

Logic. The system requires the programs to be augmented with auxiliary variables

and annotated with Hoare-style assertions. From these, verification conditions are

generated, which have to be discharged in PVS. The system has a good concurrent

language coverage, including dynamic thread creation. It does, however, not serve

our goal of focusing on symbolic execution of concurrent programs.

A huge body of work is available on verifying temporal properties of concurrent

software. This includes model checkers and even deductive proof systems (e.g.,

by Manna and Pnueli [10]). In contrast to using temporal logic though, a proof

system for dynamic logic allows functional verification, i.e., full reasoning about

data. This way verification tasks can be tackled where not only safety or liveness

but the input-output relation of a concurrent program is of interest.

The only dynamic logic for a programming language incorporating concurrency

is—to our knowledge—the Concurrent Dynamic Logic (CDL) described by David

Peleg in [12]. He notes, however, that this particular logic “suffers from the absence

of any communication mechanisms; processes of CDL are totally independent and

mutually ignorant”. In [11], Peleg gives two extensions of CDL with interprocess

communication: one with channels and one with shared variables. In both works

cited, the focus is on studying concerns of expressivity and decidability of the logics

(communication renders the logic highly undecidable, in short). The issue of a

calculus or program verification in general is not touched.

A comprehensive control flow model of Java concurrency is given in [5]. The

authors use a variant of Petri nets to model the concurrent “skeletons” of programs

with an extension to treat the “partially non-blocking rendez-vous” nature of Java’s

wait()/notify() mechanism. As far as the basic representation formalism is con-

cerned, this is closely related to our work, although we use full programs. The cited

work describes a model checker, which verifies program models for safety proper-

ties expressed in terms of control flow. The framework does not cover functional

verification.

Another class of verification tools for concurrent programs are static verifiers. A

prominent example is the SPEC# system, which incorporates a static verifier for a

concurrent object-oriented language [8]. Static verifiers are very good at detecting

race conditions but are not geared towards input-output reasoning.

It is known that the efficiency of a verification system is bounded to a great de-

gree by the compositionality of reasoning it offers. This aspect is currently not the

target of our work though. Suggestions for modularizing reasoning about concurrent

Java programs have been made in [6,14]. This research indicates that programmers

use dedicated “serializability techniques” (mostly locking protocols and reference

confinement) to ensure correctness of programs. We believe that the proposed spec-

ifications developed for model checking resp. static analysis can be put to efficient

use in a deductive framework. We have already shown how certain serializability

properties can be verified deductively in [9].

2 A Logic for Concurrent Java

The logic we present in this paper is an instance of Dynamic Logic (DL) [7], and

the proof system is a sequent-style symbolic execution calculus, which ensures good

understandability.

DL can be seen as a modal logic with a modality 〈p〉 for every program p,

which refers to the successor states that are reachable by running p. The formula

〈p〉φ expresses that the program p terminates in a state in which φ holds. A

formula ψ → 〈p〉φ is valid if for every state s satisfying pre-condition ψ a run of the

program p starting in s terminates, and in the terminating state the post-condition φ

holds. In standard DL there can be several such states because the programs can be

non-deterministic; we have equipped our programs with a deterministic semantics

via an underspecified scheduler function. This allows much stronger control over

granularity of reasoning.

Concurrent Programs

The programs we consider are Java programs with the inherent restrictions posed

in the introduction.

Several threads can execute a program concurrently. Thus, a program is a

passive template “without life” unless a thread configuration is added, i.e., a de-

scription of which threads are executing the program. Threads are given a number,

conventionally called thread id (tid); they are in fact identified with this number.

We present the theoretical foundations for programs with a single code template

or thread class. The straightforward extension to several thread classes will be given

with the example later.

Positions

We number all state-changing statements in a program (i.e., assignments; later also

locking primitives and native method calls) from left to right, starting with one. We

call these numbers the positions of the program. Their intuitive meaning is that if

a thread is at a certain position, it is about to execute the corresponding statement

when it is next scheduled to run. In addition, we consider the end of a program to

be a position, which is reached when a thread has completed the execution of the

program.

Configurations

A thread configuration specifies the threads waiting to execute at every position of

a given program. A configuration (of size n) is an n-tuple of pairwise disjoint sets of

tids. For example, ({3, 17, 5}, {}, {2}) is a configuration. A configuration of size n

is compatible with programs that have n positions, i.e., that have n− 1 statements.

We write (compatible) pairs c|p of thread configurations and programs by in-

lining the components of the configuration within the program. For example, the

program

v=(x<10); if (v) {a=10; x=a+1}

together with the configuration ({5}, {3, 4}, {1}, {2}), where four threads are active

and one has already terminated, is written as

{5}v=(x<10); if (v) {{3,4}a=x;{1}x=a+1;}{2}

A position pos is enabled in a configuration c iff its tid set is not empty and it is

not the last position, which is reserved for threads that have run to completion. We

define enabled(c, pos) ≡ (c(pos) 6= ∅) ∧ (pos < size(c)), where size(c) is the length

of the configuration tuple.

The Scheduler

The scheduler is (modeled by) the rigid function sched . That is, different models

may interpret this function differently and, thus, have different schedulers. But

within a model the scheduler is rigid, i.e., it does not depend on the program state.

Intuitively, we assume the scheduling to be data-independent; it is not affected by

the current values of variables and object attributes.

To model the fact that a scheduler may not always run the same thread for a

given thread configuration, we make it dependent on a seed : sched(r, c) is the id of

the thread scheduled to run next in configuration c given the seed r. If no position

is enabled in c, sched(r, c) = 0. Fairness or other scheduler properties are not built

into our model. Our scheduler may select an arbitrary thread id provided it occurs

in the configuration c and is not already at the last position. Properties such as

fairness can, however, be specified by adding axioms restricting the function sched .

It should be noted that Java itself is only “statistically fair”.

Signatures and Variables

The formulas of our logic are built over a set V of logical (quantifiable) variables

and a signature Σ of function and predicate symbols. Function symbols are either

rigid or non-rigid. Rigid function symbols have a fixed interpretation for all states

(e.g., addition on integers). In contrast, the interpretation of non-rigid function

symbols may differ from state to state.

Logical variables are rigid in the sense that if a logical variable has a value, it is

the same for all states. They cannot be assigned to in programs. Everything that

is subject to assignment during program execution (variables, object attributes,

arrays) is modeled by non-rigid functions. We will call these functions program

variables. In particular, arrays and object attributes give rise to functions with

arity n > 0.

We now further sub-divide the bulk of program variables into local and shared.

Every thread has its own copy of each local variable (allocated on the thread’s

stack), so that assignments to these are not visible in other threads. To distinguish

local variables in different threads, we use combinations of variable name and thread

id within the logic. Formally: we give non-rigid functions used to model thread-

local variables another argument, which is the thread id. For example, l(k) denotes

the copy of variable l used by the thread with id k. This distinction, though, is

unavailable within programs, as one thread is unaware of other threads’ copy of the

same local variable. As a consequence, every thread-local variable (which is, again,

a non-rigid function) of arity n appears with n − 1 arguments in the concurrent

program.

Shared state manipulation can arise when these local variables are dereferenced.

Whether o(13).a refers to the same memory location as o(17).a depends on the

values of o in the threads 13 and 17. This is a standard aliasing question, which is

resolved just like in the sequential KeY calculus. On the other hand, our logic also

has explicit shared variables, which are used to model static fields. Shared variables

exist only once and assignments changing their value are immediately visible to all

threads.

Formulas

The set of formulas is defined as common in first-order dynamic logic. That is, they

are built using the connectives ∧,∨,→,¬ and the quantifiers ∀,∃ (first-order part).

If p is a program, c is a configuration, r is a scheduling seed, and φ a formula, then

〈r |c|p〉φ (the “diamond” modality) and [r |c|p]φ (the “box” modality, which is a

shorthand for ¬〈r |c|p〉¬φ) are formulas. In the examples, we omit the scheduling

seed r where it is not relevant.

Intuitively, a diamond formula 〈r |c|p〉φ means that all threads from the con-

figuration c for a program p and random seed r must terminate normally (run

to completion) and afterwards φ has to hold. The meaning of a box formula is

the same, but termination is not required, i.e., φ must only hold if the program

terminates.

Furthermore, {lhs :=rhs}φ is a formula. The expression {lhs :=rhs} is called a

state update. Note that, unlike assignments, state updates can refer to the local

copies of local variables. They cannot be used within programs and, as opposed to

programs, their evaluation does not require a thread configuration or a scheduling

seed. State updates (together with an update simplification calculus, which is a

standard part of KeY) are used to handle assignments, resolve aliasing, and also

relate logical and program variables.

Semantics of Terms, Programs, and Formulas

The semantic domains used to interpret DL formulas are Kripke structures K =

(S, ρ), where S is the set of program states and ρ is the transition relation inter-

preting programs with a given thread configuration and a given scheduling seed.

Since we use deterministic programs and the scheduling is deterministic for a given

configuration and a given seed, ρ is a (partial) function, i.e., for every program p,

configuration c, and seed r, ρ(r, c, p) : S → S.

The states s ∈ S are first-order structures for the signature Σ, providing in-

terpretations of non-rigid functions (which include program variables). In fact, we

assume that the set S of states of any Kripke structure consists of all first-order

structures with signature Σ over some universe and for some interpretation of the

rigid symbols. Rigid function symbols have a fixed interpretation for all states, while

the interpretation of non-rigid function symbols may differ from state to state. We

also work under the constant domain assumption, i.e., for any two states s1, s2 ∈ S

the universes of s1 and s2 are the same set U . We refer to U as the universe of K.

Since the transition relation ρ (by definition) corresponds to the fixed seman-

tics of our programming language, the only things that can change from one model

(Kripke structure) to the other are: the signature, the universe, and the interpre-

tation of the rigid symbols (including that of the scheduler function sched).

The valuation vals,β of terms w.r.t. a given state s and a given logical variable

assignment β is as usual in first-order logic. The semantics ρβ(r, c, p) of a program p

reflects the behavior of the corresponding Java program. Algebraically it is a relation

between initial and final states, which is parameterized by a scheduling seed r and

a thread configuration c. The semantics of modal formulas is as usual for first-

order modal logic, i.e., vals,β(〈r, c, p〉φ) = true iff (s, s′) ∈ ρ(r, c, p) for some state s′

with vals′,β(φ) = true. For formulas with updates, vals,β({lhs :=rhs}φ) = true iff

vals′,β(φ) = true for some state s′, which is identical to s except that the value of lhs

is changed to vals,β(rhs).

A Kripke structure is a model of a formula φ iff φ is true in all states of that

structure. A formula φ is valid if all Kripke structures are a model of φ.

A Deductive Calculus

We employ a sequent calculus that consists of the rules for symbolically executing

concurrent programs presented in the following, together with standard structural

first-order rules, rules for integers and other datatypes (which include induction) and

rules for update simplification. All the latter rules are inherited from the standard

KeY calculus and are not shown here.

A sequent is of the form Γ =⇒ ∆, where Γ and ∆ are sets of formulas. Its

informal semantics is the same as that of the formula
∧

φ∈Γ φ →
∨

ψ∈∆ ψ. As

common in sequent calculus, the direction of entailment in the rules is from pre-

misses (sequents above the bar) to the conclusion (sequent below), while reasoning

in practice happens the other way round: by matching the conclusion to the goal.

From all rules presented we have omitted the usual context Γ and ∆, as well as

a sequence of updates U , which can preceed the formulas involved. The modality

〈[·]〉 can mean both a diamond and a box, as long as this choice is consistent within

a rule.

3 Symbolic Execution of Concurrent Programs

3.1 Extending Symmetry Reduction

Symmetry reduction is a well-known idea that different threads with the same prop-

erties (which boil down to local data and program counter) need not be distin-

guished. Most model checking frameworks use some sort of symmetry reduction

to prune the state space. This is described prominently in [13] (the Bogor tool)

and [15] (on-the-fly model-checking with TVLA).

Due to their nature, these approaches only detect symmetry between threads

with exactly the same concrete local data. In a deductive verification system we can

give this idea a new twist. We know that proofs about a program have significantly

fewer cases than the program possible inputs. In other words, even threads with

different local data will exhibit the same behavior in terms of their execution path

through the code. Furthermore, there is only a finite and relatively small number of

different paths; this number is dictated by the shape of the program. Since we are

executing programs symbolically (and have already paid a price for that in form of

case distinctions), we can reap higher benefits and, as a start, identify threads with

different local data as long as they follow the same path.

Furthermore, we can achieve even stronger symmetry reduction by separating

thread scheduling and control flow. We obtain symmetry between threads with

different paths through the program, by forcing each thread to linearly traverse

the program: There is no jumping back (except within an atomic loop), and each

thread visits each position exactly once. This means, however, that threads can end

up in “wrong” parts of if-then-else code. To preserve the original semantics of the

program, we assume that the state is not changed by the program while its control

flow is in the wrong place. For this small additional price, all thread traces are now

completely symmetric.

Thus, we have completely eliminated the necessity to consider different orderings

of threads that have reached the same position within the program. Together with

exploiting atomic and independent code, this makes deductive verification of real

concurrent systems feasible.

3.2 Expressing Unbounded Concurrency

As mentioned above, we force each thread to visit each program position exactly

once. Assuming threads with tids 1, . . . , n, it is clear that for every position pos ,

there is a permutation ppos : {1 . . . n} → {1 . . . n}, which describes the order in

which the threads are scheduled at this position.

Given these permutations, it is sufficient to know how many threads are at

each position. This fixes the exact configuration as well and allows configurations

with r positions of the form (p1 : k1, . . . , pr : kr), where p1, . . . , pr are terms rep-

resenting the permutations and k1, . . . , kr are terms representing the number of

threads. Using this notation, the next thread scheduled at position pos is the

(Post(pos) + 1)th thread, which has the tid ppos(Post(pos) + 1) where Post(pos)

is the number of threads already beyond pos in the implied current configuration:

Post(pos) = kpos+1 + · · · + kr.

Consider a configuration of size 4 with 2, 3, 5 and 7 threads waiting at each

position respectively. With the permutation functions p1, . . . , p4 from above, we

can write this configuration as (p1 : 2, p2 : 3, p3 : 5, p4 : 7). If we now concentrate on

position 2, we can see that Post(2) = 5 + 7 = 12 threads have already passed this

position and the next one to execute will be the 13th in count. But exactly which

one? Here the permutation functions come into play. The exact tid of the thread

scheduled to run next at position 2 is given by p2(Post(2) + 1) = p2(13). This way

we can talk concisely about thread orderings even if we don’t know them exactly.

The same way we can write configurations where the number of threads is not

a concrete number but a variable. This very expressive form of writing allows us to

formulate rules that do not take the scheduling order into account, as it is hidden

inside the permutation functions. What we need for a complete calculus are then

the usual algebraic properties of permutations and axioms of their interplay.

Altogether, our calculus works by reducing assertions about programs to asser-

tions about integers and permutations, which encapsulate the scheduler decisions.

In the desirable case that the program is scheduling-independent the permutations

can be removed from the correctness assertions by application of standard algebraic

lemmas. Scheduling independence means that the relevant part of a program’s final

result is always the same, in spite of possibly different intermediate states that it can

assume in different runs. Scheduling independence is an important part of program

correctness. When also the remaining assertions (now without permutations) can

be discharged, then the program is fully correct w.r.t. its functional specification.

3.3 Program Unfolding

The rules of our calculus that symbolically execute programs (i.e., treat state

changes and concurrency; they are explained in the following section), assume a

certain normal form of the program. That is, complex sequential program parts

must first be completely “unfolded”.

This process results in a program that is trace-equivalent to the original, but

each occurring expression is now simple and each assignment atomic. The program

has more of each now in exchange. A version of this transformation is already a

part of the sequential KeY calculus (see [3]), and we have in fact reused the bulk of

the corresponding rules.

The only constructs in the resulting unfolded programs are assignments, con-

ditionals and loops. We will extend these to locking primitives and certain native

method calls later. Everything else, including object creation, exceptions, etc., is

reduced to these ingredients. Moreover, the programs get normalized such that

(a) the evaluation of assignment expressions cannot have side-effects, (b) the con-

ditions of if-statements and loops are fresh local variables. The latter property

eliminates technical difficulties when specifying execution path conditions.

During the unfolding process, the KeY calculus introduces fresh local vari-

ables. For instance, we unfold o.a=u.a++; into v=u.a; u.a=v+1; o.a=v; (where

v is a fresh local variable). The Java program if (o.a>1){α} else {β} unfolds

to v=o.a>1;if (v) {α′} else {β′}, and, a little more involved, the Java program

while (o.a>1){α} expands to v=o.a>1; while(v) {α′ v=o.a>1;}.

Method calls are handled by inlining method implementations and possibly

adding conditionals for simulating dynamic binding. Remember, modular verifi-

cation is not the goal of our current effort.

3.4 Concurrency-Related Rules

3.4.1 Configuration Skolemization

The following rule replaces concrete thread configurations by a compact permuta-

tion-based representation, while implying no particular knowledge of the introduced

permutations as they are represented by new (Skolem) constants.

conf
=⇒ 〈[r |cp |p]〉φ

=⇒ 〈[r |c|p]〉φ

where c is a thread configuration of the form ({i11, . . . , i
1
l1
},. . . , {ir1, . . . , i

r
lr
}); and cp

is a configuration of the form (p1 : l1, . . . , pr : lr), where p1, . . . , pr are fresh unary

permutation functions.

3.4.2 Position Choice

Symbolic execution starts with the choice of an enabled position in the given config-

uration. For this we employ the function P , which is a projection of the scheduling

function. For a configuration c and a seed r, P (r, c) returns the position from which

the next thread will be scheduled—or 0 if no enabled positions remain. Again,

enabled (c, pos) = (c(pos) > 0) ∧ (pos < size(c)).

step

=⇒ P (r, c) = pos

path(pos , p) =⇒ {lhs∗(pos):=rhs∗(pos)}〈[r |π {ppos :n−1}lhs=rhs{ppos+1:k+1} ω]〉φ

¬path(pos , p) =⇒ 〈[r |π {ppos :n−1}lhs=rhs{ppos+1:k+1} ω]〉φ

=⇒ 〈[r | π {ppos :n} lhs = rhs

︸ ︷︷ ︸

at position pos in p

{ppos+1:k} ω]〉φ

Fig. 1. The concurrent symbolic execution rule

It is a rule of the calculus that the following axioms describing properties of P

may at any time be added to the left side (the antecedent) of a sequent:

• The axiom 0 ≤ P (r, c) < size(c) effectively amounts to a disjunction over the

positions of c, which during the proof gives rise to a case distinction.

• The values of P are of course restricted to the positions enabled in a given

configuration: P (r, c) 6= 0 → enabled (c, P (r, c)).

• P may only return 0 if no position is enabled, which is expressed by the fol-

lowing axiom:

P (r, c) = 0 →
∀pos .(1 ≤ pos < size(c) → ¬enabled(c, pos))

3.4.3 The Rule for Concurrent Execution

Figure 1 shows the concurrent symbolic execution rule of our calculus. In the rule, π

and ω denote unchanged program parts, and pos is the position of the executed as-

signment lhs=rhs in the program p. The condition path(pos , p) is the path condition

of this assignment (which is at position pos) in the program p. It is a conjunction of

all if-conditions on the path from the beginning of the program to the assignment.

Each if-condition appears as given if the path goes through the then-part, and

negated if the path goes through the else-part. For example, the path condition of

the statement v=t; in the program if (a) {if (b) {} else {v=t;}} else {}

is b = FALSE ∧ a = TRUE .

Furthermore, {lhs∗(pos):=rhs∗(pos)} is a state update built by replacing every

occurrence of a local variable v in lhs and rhs , by v(ppos (Post(pos) + 1)) using the

configuration of p (cf. definition of Post(·) in 3.2). This way, the update represents a

“sequential instantiation” of the concurrent assignment, i.e., it makes explicit which

thread-copy of the variable is involved.

For example, if we consider the assignment v=o.a; at position 1 in some pro-

gram, and the configuration before execution is (p1 : 2, p2 : 5, p3 : 7), then the

generated update is {v(p1(13)):=o(p1(13)).a}. The update will be tackled by the

update simplification rules, after the program has been completely executed. This

will happen at some point, since the rule reduces the general measure of enabledness

in the system.

lock

=⇒ P (r, c) = pos

path(pos , p) =⇒ {o∗(pos).<lockcount>:=o∗(pos).<lockcount>+1}

{o∗(pos).<lockedby>:=Post(pos)+1}

〈[r |π {ppos :n−1}o.<lock>(){ppos+1:k+1} ω]〉φ

¬path(pos , p) =⇒ 〈[r |π {ppos :n−1}o.<lock>(){ppos+1:k+1} ω]〉φ

=⇒ 〈[r | π {ppos :n} o.<lock>()

︸ ︷︷ ︸

at position pos in p

{ppos+1:k} ω]〉φ

Fig. 2. The rule for lock acquisition

3.4.4 The Rule for Empty Programs

In case no position is enabled in a configuration, the program does nothing and the

modality can be removed altogether. The following rule applies:

empty − program
=⇒ P (r, c) = 0 =⇒ φ

=⇒ 〈[r |c|p]〉φ

3.4.5 Reasoning About Permutations

For the calculus to be complete, we need to add standard axioms that characterize

permutations. We do not present these axioms here. It is a rule of the calculus that

axioms can be added to the left side of any sequent at any time.

Together with the following permutation interplay axiom

pi+1(Post(i+ 1) + 1) ∈ {pi(1) . . . pi(Post(i))} \ {pi+1(1) . . . pi+1(Post(i+ 1))}

the calculus is sound and complete. This axiom constrains the threads that can be

scheduled in a given configuration at position i + 1. These are exactly the threads

that have already passed the position i, but are not yet past position i+ 1.

4 Treating Concurrency Primitives

4.1 Treating Locking Primitives

At this point we add rules for reasoning about synchronized methods and blocks.

Synchronized code offers a way to ensure mutual exclusion of threads by block-

structured acquisition and release of locks associated with objects. To make this pro-

cess explicit, we extend the Object class with a pair of “ghost” methods <lock>()

and <unlock>(). Code marked as synchronized is automatically surrounded by

invocations of these methods during the unfolding stage. The locking methods ma-

nipulate the ghost integer fields <lockedby> (identity of the thread holding the lock)

and <lockcount> (locking depth), which are also introduced into every object.

The lock acquisition method is symbolically executed by applying the rule shown

in Figure 2. The structure of this rule is similar to the step rule for handling

unlock

=⇒ P (r, c) = pos

path(pos , p) =⇒ {o∗(pos).<lockcount>:=o∗(pos).<lockcount>-1}

〈[r |π {ppos :n−1}o.<unlock>(){ppos+1:k+1} ω]〉φ

¬path(pos , p) =⇒ 〈[r |π {ppos :n−1}o.<unlock>(){ppos+1:k+1} ω]〉φ

=⇒ 〈[r | π {ppos :n} o.<unlock>()

︸ ︷︷ ︸

at position pos in p

{ppos+1:k} ω]〉φ

Fig. 3. The rule for lock release

normal assignments. Execution is successful if the path condition is satisfied and

the statement is enabled (remember, P (r, c) = pos implies enabled (c, pos)).

In addition, we also amend the enabledness predicate in order to capture the

mutual exclusion semantics of locking. The new definition is (for o.<lock>() at

pos):

enabled(c, pos) ≡ (c(pos) > 0)∧
(o.<lockcount> = 0 ∨ o.<lockedby> = Post(pos) + 1)

The added second line means that either the lock has to be available or it has

been previously acquired by the thread requesting it (reentrant locking). A similar

rule exists for the <unlock>() method, which decreases the lock count and clears

the locked by status when the count reaches zero. For simplicity we do not clear

the <lockedby> flag, since it does not prevent the acquisition of the lock once

<lockcount> reaches zero.

The presence of locking opens a possibility for deadlock. Just as the sequential

KeY calculus maps abrupt termination onto non-termination, we have decided to

model deadlock logically as termination. It is still easy to discern a deadlocked state

from normal termination by considering the final program configuration. Besides,

the desired postcondition would still hold, even if the program becomes prematurely

disabled.

4.2 Treating Condition Variables

An important feature of Java’s concurrency mechanism is condition variables. It al-

lows threads to suspend execution until an external signal is received. The signaling

does not involve thread identities, but works via a shared reference to an arbitrary

object.

The waiting thread must acquire the object’s lock first. Calling wait() on the

object releases the lock and suspends thread execution. When a wake-up signal is

received, the thread leaves the suspended state but does not yet continue execution.

It must compete now for the acquisition of the lock with other threads. When this

succeeds, the state of the lock is restored as before the wait.

The notifying thread must possess the object lock as well. Sending a wake-

up signal to one (randomly chosen) suspended thread requires calling notify()

on the corresponding object. Waking up all threads waiting is possible by calling

notifyAll(). Again, the waiting threads will be able to proceed in the earliest

when the notifying thread has released the lock.

Since other threads can intervene and destroy the condition between the wake-

up signal and lock re-acquisition (a phenomenon known as “barging”), it is in most

cases compulsory to re-test the condition and return to the suspended state if it is

not satisfied. This practice is advocated by all programming guidelines and followed

by most of the programs. Unfortunately, it constitutes a non-atomic loop, which

we cannot (yet) treat in our framework.

On the other hand, for conditions that are uniform and atomic (as outlined

below), we can consider the whole wait-in-loop idiom as one atomic statement. Most

programs in practice satisfy these requirements. Such programs can be verified with

the calculus presented in the following.

4.2.1 Additional Means of Expression

We package the common implementation of a condition variable in a special ghost

method void <waitUntil>(boolean b, int depth), which we add to the Object

class. The intuitive meaning of this method is to stall all thread movement at this

point until the given condition is satisfied. The method also provides every passing

thread with a lock on the object (which must be free for the method to execute),

thus capturing the absence of barging.

The actual Java implementation to be verified is replaced by this method during

the unfolding stage of the verification process. The method has two parameters: a

boolean condition, which must evaluate to true for a thread to proceed (it is the

negated condition of the condition-testing while loop in the original program), and

an integer indicating the previous locking depth. The lock given to the proceeding

thread will be set to this locking depth.

The appropriate locking depth is returned by another ghost method we intro-

duce: int <unlockFull>(). It is placed by the unfolding process before every

<waitUntil>(). The method decreases the locking depth to zero, effectively re-

leasing the lock; also, the locking depth before the call is returned to the caller.

The unfolding also adds a check for the appropriate lock state. An example of the

unfolding is given in the Figures 4 and 5.

Finally, we need some means to differentiate between threads that are ready to

enter the section guarded by <waitUntil>() and threads that have suspended their

execution until a notification arrives. We employ the ghost field <waiting> present

in every object to keep track of the number of suspended threads.

4.2.2 Restrictions Posed on Programs

In order to verify programs with condition variables with our calculus we have to

pose several restrictions on programs.

The condition of the <waitUntil>() may not have any side effects. This can be

expressed by an assignable clause and checked by a number of methods including

deductive verification with KeY. On the other hand, this requirement can be relaxed

to include arbitrary code as long as it is independent of the system under verification.

This would allow, for instance, allocation of iterators.

Since our framework does not support thread identities, programs are not al-

���������
	�� LinkedList list = � ��
 LinkedList ();

�
������������� � ������� � �����
��������� put(Object o) {
list.add(o);
	������ .notifyAll ();

}

�
������������� � ������� � �����
� Object get () {
	���� {

�������� (list.isEmpty ()) 	������ .wait ();

} ����	���� (InterruptedException e) {
// If we get here , we were not actually notified .
// Returning null doesn ’t indicate that the
// queue is empty , only that the waiting was abandoned .
����	���� � � ���
� ;

}
���
	���� � list.removeFirst ();

}

Fig. 4. Blocking queue source code

���������
	�� LinkedList list = � ��
 LinkedList ();

�
���������!���"��� put(Object o) {
	������ .<lock >();
list.add(o);
�"��������� � b = !Thread .holdsLock (������);
�$# (b) 	�������
 � ��
 IllegalMonitorStateException ();
	������ .notifyAll ();
	������ .<unlock >();

}

�
��������� Object get () {
	������ .<lock >(); //*
�"��������� � b = !Thread .holdsLock (������); //*
�$# (b) 	�������
 � ��
 IllegalMonitorStateException (); //*
� � 	 d = 	������ .<unlockFull >(); //*
	������ .<waitUntil >(! list.isEmpty (), d);
���
	���� � list.removeFirst ();
	������ .<unlock >();

}

Fig. 5. Blocking queue source code (unfolded)

lowed to call interrupt() on a thread. Thus, <waitUntil>() also never throws

an InterruptedException.

Unsurprisingly, we also don’t allow the use of the wait(long timeout) method,

since our framework has no notion of real time.

4.2.3 An Example Application

A blocking queue allows producer and consumer threads to exchange data elements.

For this purpose the queue offers the operations put() and get(). Calling get()

on an empty queue results in the consumer being blocked until a new element from

a producer arrives.

A typical specification of the queue could demand that connecting n producers

and n consumers via the queue will result in all threads running to completion, and

the items retrieved will be exactly the items deposited (in some order induced by

notifyAll

=⇒ P (r, c) = pos

path(pos , p) =⇒ {o∗(pos).<waiting>:=0}

〈[r |π {ppos :n−1}o.notifyAll(){ppos+1:k+1} ω]〉φ

¬path(pos , p) =⇒ 〈[r |π {ppos :n−1}o.notifyAll(){ppos+1:k+1} ω]〉φ

=⇒ 〈[r | π {ppos :n} o.notifyAll()

︸ ︷︷ ︸

at position pos in p

{ppos+1:k} ω]〉φ

Fig. 6. The rule for notification

the scheduler). This can be written as:

q.<lockcount> = 0 ∧ ¬q = null ∧ q.list.size = 0 →

∀n. n > 0 → 〈{p1:n}q.put(in);{0}||{pm:n}out=q.get();{0}〉

∀k. 1 ≤ k ≤ n→ out(pr(k)) = in(pa(k))

where r and a are positions of list removal and addition operations respectively.

The diamond formula above includes two thread classes separated by ||. More

thread classes can be added in similar manner. We number the positions in the

program continuously from left to right, but now every thread class has its own extra

“end-of-thread” position. We also amend the definition of Post(pos) to include only

positions in the same thread class as pos . Everything else can remain the same.

A typical implementation for such a queue is shown in Figure 4, while Figure 5

shows the result of a partial unfolding (list operations and exceptions are not un-

folded). A simplification is possible by leaving out the marked part of the code in

the get() method, since it serves little purpose in this particular setting. A fixed

value of 1 can be used for d in this case. Currently, we are working on a mechanized

inductive correctness proof of this example.

4.2.4 The Rules for Symbolic Execution

We start with a rule for notifyAll(), which is shown in Figure 6. If this statement

is enabled (first premiss) and the path condition is satisfied the rule wakes up all

suspended threads by setting the <waiting> counter to zero (second premiss). If the

path condition is not satisfied the statement is a no-op. A similar rule can be given

for notify(), which decrements the <waiting> counter by one. If the program

has more than one wait() on (potentially) the same object then position-indexed

<waiting> fields have to be used. This extension is straightforward, and we leave

it out here.

Now we look at the rule for symbolic execution of <waitUntil>() given in

Figure 7. The first premiss requires that the position in question is enabled:

enabled (c, pos). We have given a general definition of enabledness in Section 3.4.2,

and updated it for locking operations in Section 4.1. For the o.<waitUntil>()

waitUntil

=⇒ P (r, c) = pos

=⇒ Φ ↔ 〈boolean x = b∗(pos);〉x = TRUE

path(pos , p), Φ =⇒ {o∗(pos).<lockcount>:=depth}

{o∗(pos).<lockedby>:=Post(pos)+1}

〈[r |π {ppos :n−1}o.<waitUntil>(b, depth){ppos+1:k+1} ω]〉φ

path(pos , p), ¬Φ =⇒ {o∗(pos).<waiting>:=o∗(pos).<waiting>+1}

〈[r |π {ppos :n}o.<waitUntil>(b, depth){ppos+1:k} ω]〉φ

¬path(pos , p) =⇒ 〈[r |π {ppos :n−1}o.<waitUntil>(b, depth){ppos+1:k+1} ω]〉φ

=⇒ 〈[r | π {ppos :n} o.<waitUntil>(b, depth)

︸ ︷︷ ︸

at position pos in p

{ppos+1:k} ω]〉φ

Fig. 7. The rule for <waitUntil>()

operation at position pos , we update the predicate again, to:

enabled (c, pos) ≡ (c(pos) − o.<waiting>) > 0 ∧ o.<lockcount> = 0

This means that at least one thread at pos has to be out of suspended state and

the lock of o has to be available, since it will be acquired during the execution.

The second premiss captures the condition Φ of the condition variable. Φ can

be 〈boolean x =b∗(pos);〉x = TRUE or its first-order equivalent. Note that the

diamond formula is purely sequential and b∗(pos) is the sequential instantiation of b

for the next thread to run at pos (i.e., thread with id ppos(Post(pos) + 1)). In the

case of the blocking queue, Φ is simply q.list.size > 0. The rule is complete if

the condition is uniform (i.e., if one thread satisfies it, then all do). This is the case

when the condition is expressed in terms of a shared data structure. We have not

yet fully investigated the completeness of the rule for non-uniform conditions.

The third premiss assumes that the condition Φ is satisfied. In this case one of

the non-suspended threads can proceed past the <waitUntil>(). The proceed-

ing thread will have acquired the object lock as the result of the execution of

<waitUntil>().

The fourth premiss assumes that the condition Φ does not hold. In this case

there is no thread movement (the configuration does not change), but the number

of suspended threads o.<waiting> increases by one.

The fifth premiss deals with the negative path condition. In this case, just as

with other rules, the thread executes a no-op.

5 Conclusion

We have defined a Dynamic Logic for reasoning about input-output behavior of

a subset of concurrent Java programs. The subset includes (common) programs

utilizing condition variables. For this logic we have presented a deductive calculus

that is based on efficient symbolic execution. This was made possible by a significant

extension of the technique of symmetry reduction.

Currently, we are performing experiments with the mechanization of the calculus

in the KeY system. Furthermore, we are working on extending the covered Java

fragment—in particular to include non-atomic loops—by devising an algebraically

more elaborated model of the scheduler.

References

[1] E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Steffen. An assertion-based proof system for
multithreaded Java. Theor. Comp. Sci., 331(2–3):251–290, 2005.

[2] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski, A. Roth,
S. Schlager, and P. H. Schmitt. The KeY tool. Software and System Modeling, 4:32–54, 2005.

[3] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software: The KeY
Approach. LNCS 4334. Springer-Verlag, 2007.

[4] B. Beckert and V. Klebanov. A dynamic logic for deductive verification of concurrent programs. In
M. Hinchey and T. Margaria, editors, Proceedings, 5th IEEE International Conference on Software
Engineering and Formal Methods (SEFM), London, UK. IEEE Press, 2007. To appear. Available from
http://www.key-project.org .

[5] G. Delzanno, J.-F. Raskin, and L. V. Begin. Towards the automated verification of multithreaded Java
programs. In J.-P. Katoen and P. Stevens, editors, Proceedings, 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), volume 2280 of LNCS, pages
173–187. Springer, 2002.

[6] A. Greenhouse and W. L. Scherlis. Assuring and evolving concurrent programs: annotations and policy.
In ICSE ’02: Proceedings of the 24th International Conference on Software Engineering, pages 453–463,
2002.

[7] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[8] B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A statically verifiable programming model for
concurrent object-oriented programs. In Z. Liu and J. He, editors, 8th International Conference on
Formal Engineering Methods, ICFEM, Macao, China, Proceedings, volume 4260 of LNCS, pages 420–
439. Springer, 2006.

[9] V. Klebanov. A JMM-faithful non-interference calculus for Java. In Scientific Engineering
of Distributed Java Applications, 4th International Workshop, Proceedings, Luxembourg-Kirchberg,
volume 3409 of LNCS, pages 101–111. Springer, 2004.

[10] Z. Manna and A. Pnueli. Completing the temporal picture. In Selected papers of the 16th international
colloquium on automata, languages, and programming, pages 97–130. Elsevier Science Publishers B.
V., 1991.

[11] D. Peleg. Communication in concurrent dynamic logic. J. Comput. Syst. Sci., 35(1):23–58, 1987.

[12] D. Peleg. Concurrent dynamic logic. J. ACM, 34(2):450–479, 1987.

[13] Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies for model checking dynamic
software. In Proceedings SoftMC 2003, Workshop on Software Model Checking, ENTCS 89, 2003.

[14] E. Rodŕıguez, M. B. Dwyer, C. Flanagan, J. Hatcliff, G. T. Leavens, and Robby. Extending JML
for modular specification and verification of multi-threaded programs. In ECOOP, LNCS 3586, pages
551–576. Springer, 2005.

[15] E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic. In POPL ’01:
Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 27–40. ACM Press, 2001.

http://www.key-project.org

	Introduction
	Motivation and Goals
	Achieved Java Coverage
	Related Work

	A Logic for Concurrent Java
	Symbolic Execution of Concurrent Programs
	Extending Symmetry Reduction
	Expressing Unbounded Concurrency
	Program Unfolding
	Concurrency-Related Rules

	Treating Concurrency Primitives
	Treating Locking Primitives
	Treating Condition Variables

	Conclusion
	References

